Git Workflows and Best
Practices for Open
Source Projects

Completed M.Tech in CSE from IIT Kanpur.
Thesis was on text generation and NLP.

Joined IBM IRL as a software engineer in
August 2020.

Currently maintaining the open source
project Move2Kube.

Harikrishnan Balagopal

github.com/HarikrishnanBalagopal

https://github.com/HarikrishnanBalagopal

S

OPENSHIFT

—_—

O
MOVE2KUBE

KONVEYOR

github.com/konveyor/move2kube

Operator

https://github.com/konveyor/move2kube

Konveyor Community Projects

Migrate applications between
Kubernetes clusters

Migrate virtual machines to
FORKLFT Kubernetes (KubeVirt)

TACKLE

Migrate applications from

MOVE2KUBE other technologies to

Kubernetes

Existing replatform

Applications &
Infrastructure

/
Q
(o

Discover, Assess, and Analyze
Applications for containerization
TACKLE PP

Application refactoring
repurchase recommendations

retain retire

PELORUS Measure the impact of changes on

software delivery performance
4

Fundamentals of Git

What is Git?

e Git is by far, the most widely
used modern version control
system in the world today.

e Git is a mature, actively
maintained open source project
originally developed in 2005 by
Linus Torvalds.

e Git is distributed and is
designed with performance,
security and flexibility in mind.

Who has done this before?

vl v2 v2 experimental v3 v3.1
feature
v4 v4 with tests

Git lets you maintain multiple
versions of your software

e [Fast.

* Memory efficient. No duplicate files or folders.

* No need to manually copy and paste files and folders.

* No need to be online, or connect to a server just to work on your code.

* Tries its best to never lose any of your data EVEN when you use the
wrong Git commands.

e Easy to quickly switch to a different version of your code and work on
some experimental feature or bug fix.

e Battle tested daily by the most demanding projects in the world.

38

How Git stores your code

How Git stores your code

=
i=

How Git stores your code
® o

- A commit is a snapshot of the entire repository (not a diff).

Time

- Commits are immutable.

- Commits point back in time to their parent commits.

11

How Git stores your code

master feature . Commit

- A commit is a snapshot of the entire repository (not a diff).

- Commits are immutable.

- Commits point back in time to their parent commits.

. Branch

- A branch is a pointer to a commit.

- If you are on a branch and you make a new commit then
the branch will update to point to the new commit.

- The default branch is usually called master or main but
you can change it to whatever you want.

- You can think of branches as a way to put a pin X in
something you are working on and want to return to later.

12

https://emojipedia.org/pushpin/#:~:text=Emoji%20Meaning,head%20to%20the%20upper%20right.&text=Pushpin%20was%20approved%20as%20part,to%20Emoji%201.0%20in%202015.

Git terminology

Repository (repo): Git stores the code in repositories.
Local repo: A repo on our local machine (laptop/desktop).
Remote repo: A repo hosted on some server somewhere.

upstream: The remote repo we want to contribute to.
Example: https://github.com/torvalds/linux.qgit

origin: Our copy of the upstream repo. This is also a remote
repository, usually created by forking the upstream repo on

GitHub, GitLab, etc.
Example: https://github.com/myusername/linux.git

13

How to get started

2 ways to get started:

e Create a new repo on your local machine (laptop/desktop).
Go to the directory containing the source code and do git init

$ pwd

/Users/harikrishnanbalagopal/demo

$ mkdir mylocalrepo

$ cd mylocalrepo/

$ git init

Initialized empty Git repository in /Users/harikrishnanbalagopal/demo/mylocalrepo/.git/

e Clone a remote repo (from GitHub, GitLab, etc.)

'$ git clone git@github.ibm.com:Harikrishnan-Balagopal/git—-exercises.git
Cloning into 'git-exercises'...

remote: Enumerating objects: 39, done.

remote: Total 39 (delta ©), reused 0 (delta), pack-reused 39
Receliving objects: 100% (39/39), 338.49 KiB | 370.00 KiB/s, done.
Resolving deltas: 100% (8/8), done.

'$ cd git-exercises/

$ 1s

README . md

14

Creating a local repo

‘git init’ creates a hidden
directory called ".git containing
everything that Git uses.

Any files/directories we add to
Git will be hashed and stored
under the objects directory.

The file called HEAD contains
the branch/tag/commit SHA we
have checked out.

When we create new branches

or tags, their metadata will be
stored under the refs directory.

15

$ tree -a
L .git
—— HEAD
—— config
—— description
—— hooks
—— applypatch—-msg.sample
—— commit-msg.sample
fsmonitor-watchman.sample
—— post—update.sample
—— pre—applypatch.sample
—— pre—commit.sample
—— pre—-merge—commit.sample
—— pre—-push.sample
—— pre-rebase.sample
—— pre-receilve.sample
—— prepare—-commit-msg.sample
—— update.sample
info
L— exclude
—— objects
—— 1info
—— pack
—— refs
—— heads
—— tags
9 directories, 16 files

Git is a content addressable
SCYACUNEES (o] (=

- We can insert any kind of content into a Git repository, and Git will hand us back a unique
key that we can use to retrieve that content later.

- This key is just the SHA-1 hash of the content. So if the content changes the key
will also change (hence “content addressable”).

- To turn a folder into a git repository we can use the command git init. This creates
a hidden folder called ".git that contains all the information that Git uses.

S git init test

Initialized empty Git repository in /tmp/test/.git/
$ cd test

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type £

16

Git is a content addressable
SCYACUNEES (o] (=

We can insert an object using the git hash-object command.
Git will return the 40 character SHA-1 hash.

$ echo 'test content' | git hash-object -w --stdin
d670460bdbdaece5915caf5c68dl12f560a9fe3ed

The object is stored in the ".git/objects folder.

$ find .git/objects -type £
.git/objects/d6/70460bdbdaece5915caf5c68d12£f560a9fe3ed

We can see the content of the object using the git cat-file command.

$ git cat-file -p d670460b4dbd4aece5915caf5¢c68d12f560a9fe3e4
test content

This type of object is called a blob (Binary Large OBject) since it stores
the actual content of files.

Git has 2 other types of objects called Trees and Commits.

17

Git tree

Trees are made up of subtrees and blobs.
Trees correspond to directories and blobs correspond to files.
Trees are also hashed just like everything else in Git.

S git cat-file -p master” {tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README
100644 blob 8£94139338£f9404£f26296befa88755£fc2598c289 Rakefile
040000 tree 99fla6dl2cb4b6f19c8655fcadb6c3ecf317074e0 lib
S git cat-file -p 99f1a6dl2cb4b6£19c8655fcad6c3ecf317074e0
100644 blob 47¢c6340d6459e05787£644c2447d2595£5d3a54b simplegit.rb
$ tree
tree

README README Rake
Rakefile
1ib

I_ Simplegit .rb simplegit.rb

1 directory, 3 files

18

Git commit

e A tree represent a snapshot of the repo at a point in time.
However it doesn’t have any information about who saved the
snapshot, when it was saved, or why it was saved.

e A commit contains all this extra information. Author, committer,
date and time, a commit message giving the reason for the
commit, etc.

$ git cat-file -p fdf4dfc3

tree d8329fclcc938780££fdd9£f94e0d364e0ea74£579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700
committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

First commit

e A commit points to a tree.

19

Git internal graph

Putting it all together we
get a graph made of

commiti{ €&—— commit2 €C«— commit3

commits, trees and blobs. l l i
There are no cycles in this tree 2
graph.

The trees pointed to by tree 1.1 tree 2.1

later commits can still
reference trees and blobs

from earlier commits. tree 1.1.1 tree 2.1.1

This gives us a persistent

data structure without

redundancy.

20

Git commands

3 important areas in Git

e Working directory: This contains
the files and directories you
have checked out currently on
your filesystem (excluding the
".git’ directory).

e Staging area (also called Index):
This provides a temporary space
where you can put changes that
you want in the next commit.

git checkout

git commit

* Repository: This is the graph of .
commits (snapshots) that Git repository
maintains. It contains all the
blobs, trees, commits, branches,
tags, etc.

22

Making a commit

e To make a new commit first $ echo 'just some python code' > foo.py
$ git add foo.py

we do git add <filename1> s git status
<filename2>" to specify the °n branch master

changes we want in the No commits yet
commit. Changes to be committed:
(use "git rm —--cached <file>..." to unstage)
new file: foo.py

° These Changes are now in '$ git commit -m 'add new feature foo'
the Staging area. We can [master (root-commit) 06e6377] add new feature foo

1 file changed, 1 insertion(+)

see this by running glt create mode 100644 foo.py
N $ git status
StatUS On branch master
nothing to commit, working tree clean

. '$ git log
e Then we do g|t cCOmmiIt -MmM commit 06e63779b93e795939e999d90db3e0f3110e5c82 (HEAD -> master)
Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>

<commit message>‘ to Date: Thu Dec 17 23:39:20 2020 +8530
finalize and make the
commit itself. s

add new feature foo

23

Debugging Git

e git status tells us what branch
we have checked out. It also

tells us the differences between .

the working directory and the
last commit.

‘git log —graph —all shows the
entire graph containing the
commits, branches, tags, etc.

Use git log —graph —all —
oneline to only show the first
line of the commit messages.

% commit ©1ab707786e3a451a8ef531b2f8220475be257f2 (HEAD -> chore/releaseplugin,

Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Thu Dec 17 00:39:53 2020 +0530

chore: release the plugin when we make a non prerelease
Signed-off-by: Harikrishnan Balagopal <harikrishmenon@gmail.com>
commit 2719cca3e93f71dak016b07850666f1538Fa8822 (
Author: HarikrishnanBalagopal <harikrishmenon®gmail.com>
Date: Thu Dec 17 00:05:51 2020 +0530
feat: create the translate plugin for kubectl (#332)

feat: create the translate plugin for kubectl

The translate plugin is a much simpler version
of the translate command in move2kube.

Also refactored move2kube commands to
allow it to be used as a plugin.

Signed-off-by: Harikrishnan Balagopal <harikrishmenon@gmail.com>
commit 0c28344efclee3fab3e20b4628fd2472dcc274bf
Author: HarikrishnanBalagopal <harikrishmenon@gmail.com>
Date: Tue Dec 15 22:37:51 2020 +0530
chore: add each valid PR type to a group in release notes (#331)
Signed-off-by: Harikrishnan Balagopal <harikrishmenon@gmail.com>
commit 17d7e48455501050473f851ba895efcf4eff3534

Author: HarikrishnanBalagopal <harikrishmenon@gmail.com>
DERS-K Tue Dec 15 21:55:53 2020 +0530

, main)

ci: added support for specifying commit and previous tag while releasing (#330)

For major releases we might want to have the changes from all

24

Creating and deleting a branch

e git branch’ lists the branches

e git branch <branch name> creates a
new branch pointing to the commit we
are currently on. [

&

git branch
master
glit branch my-feature

e git branch -rd <branch name>' to delete g1t branch
a branch we fetched from a remote. master
Note: This doesn’t delete it on the remote my—feature
repo. To delete it on the remote repo:
‘git push -d <remote_name>
<branch_name>

e git branch -d <branch name> to delete a
branch in your local repo.

¥ & & ¥

* Jo create a new branch and immediately
check it out we can use git checkout -b
<branch name>

25

Creating a commit on a branch

$ git branch
* master
'$ git branch my-feature
$ git branch
* master
my—feature
'$ git checkout my-feature

e |n order to create a commiton o f00.py

Switched to branch 'my-feature'

a branch we need to checkout s git branch

< . master
that branch using git checkout = my-reature
. $ git log ——graph —-all
.<:k)réir](:r] r]EirT1EB:> * commit 06e63779b93e795939e999d90db3e0f3110e5¢c82 (HEAD -> my-feature, master)
Author: Harikrishnan Balagopal <harikrishmenon@Pgmail.com>
Date: Thu Dec 17 23:39:20 2020 +0530

Py When yOU Create a neW add new feature foo

'$ echo 'some more code' > bar.py
'$ git add bar.py & & git commit -m 'add code for feature bar'

COmmIt, Glt WI” aUtomat|Ca”y [my—-feature dd9b391] add code for feature bar

1 file changed, 1 insertion(+)

rT1()\/EB tf]EB k)FEif]()f] B/C)LJ f]Ei\/EB create mode 100644 bar.py
$ git log ——graph —-all

checked out to F)()ir]t {0 the New « commit dd9p39149852ead8242669926ac7d0e49eadds1c (HEAD —> my-feature)

. Author: Harikrishnan Balagopal <harikrishmenon@Pgmail.com>
commit. Date: Fri Dec 18 11:51:58 2020 +0530

add code for feature bar
x commit 06e63779b93e795939e999d90db3e0f3110e5c82 (master)
Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>

Date: Thu Dec 17 23:39:20 2020 +0530

add new feature foo

20

Ignoring files and folders

$ 1s

index.]Js package-lock.json package.json
$ git status

On branch main

 Usually we have some files
and folders that we don’t
want to commit (build output,

N\

No commits yet

N Untracked files:
nOde_mOdUIGS ; etC.). (use "git add <file>..." to include in what will be committed)

* Create a .gitignore file in the

base Of the repO COntalnlng nothing added to commit but untracked files present (use "git add" to track)

all the paths that should be '$ echo 'node_modules/' > .gitignore
$ git status

ignored. On branch main
No commits yet
* |t is also possible to have Untracked Files:

mUItlple N gitignore‘ ﬁleS (One (use "git add <file>..." to include in what will be committed)

per folder). Each ".gitignore

file can have paths relative to

the file itself. nothing added to commit but untracked files present (use "git add" to track)

$ git add .gitignore index.js package.json package-lock.json
$ git commit -m 'some commit message'

27

Creating and deleting a tag

e Atag is a pointer to a commit.
e git tag lists all the tags.

e git tag <tag name> creates a new tag pointing to the commit we
are currently on. git tag -d <tag name> deletes the tag.

$ git tag

$ git tag my-tag-1

$ git tag

my—-tag-1

'$ git log ——graph —-all

* commit dd9b39149852ead8a42669926ac7d0e49eadd51c (HEAD -> my-feature, tag: my-tag-1)
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Fri Dec 18 11:51:58 2020 +0530

add code for feature bar

x commit 06e63779b93e795939e999d90db3e0f3110e5c82 (master)
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
DERY:K Thu Dec 17 23:39:20 2020 +0530

~add new feature foo 03

Difference between a
branch and a tag

Similarities: Both are pointers to a commit.

When you checkout a tag and make a commit the tag will not move.

When you checkout a branch and make a commit the branch will move to
point to the new commit.

Note: Only the branch you have checked out will move. All other branches
stay in place.

$ git log ——graph ——all —-oneline
* dd9b391 (HEAD -> branchl, tag: tag2, tag: tagl, branch2) add code for feature bar
* 06e6377 (master) add new feature foo
'$ echo 'even more code' >> foo.py
'$ git add foo.py && git commit -m 'add more code to foo.py'
[branchl 9aeblc5] add more code to foo.py
1 file changed, 1 insertion(+), 1 deletion(-)
$ git log ——graph ——all —-oneline
* 9aeblc5 (HEAD => branchl) add more code to foo.py
* dd9b391 (tag: tag2, tag: tagl, branch2) add code for feature bar

* 06e6377 (master) add new feature foo -

Difference between a
branch and a tag

 Tags can be lightweight or annotated.

* Annotated tags have a tagger, time, and a message associated with them
(Similar to commits).

e git tag -a <tag name> -m <message> to create an annotated tag.

$ git tag -a vl.4 -m "my version 1.4" $ git show vl.4

S git tag tag vl1.4

v0.1 Tagger: Ben Straub <benf@straub.cc>
vli.3 DERASK Sat May 3 20:19:12 2014 -0700
vl.4

my version 1.4

commit ca82a6dff817ec66£44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
DERA-K Mon Mar 17 21:52:11 2008 -0700

Change version number
30

Merging in Git

When we start working on a new my-feature

ot

feature, we create a branch and
make some commits on It.

When we are done working on our

feature and want to add it to the e D DN D __

master branch, we can do a merge.

To do a merge: master
1. git checkout <branch you want

to merge into> myteate

2. git merge <branch you want to
merge from>

This will create a new merge
commit that contains the changes
from both branches.

master

Merging in Git

e (Git does what is known as a 3-
way merge.

my-feature

e Given 2 commits to merge, git l
finds a 3rd commit that is the common
lowest common ancestor of the e |
2 commits.
e Then it compares all 3 commits T

to each other to decide what —
should go in the final merged
commit.

32

Merging in Git

e \We go through each file in the
common ancestor commit and
Compare |t .to .th e my-feature Common Ancestor master
corresponding file in the other 2 SR =" 5c1170f... file-1.txt 5c1170f... file-1.txt
commits to see If it was

C h an g ed _ 987bcc2... file-2.txt 3eac351... file-2.txt 3eac351... file-2.txt

e0fb7e0... file-3.txt e0fb7e0... file-3.txt e0fb7e0... file-3.txt

e The files that haven't changed
can be added to the merge
commit as is.

c8cf3ae... file-4.txt c8cf3ae... file-4.txt ae3cfc1... file-4.txt

33

Merging in Git

my-feature Common Ancestor master
* |[n case the file was changed In
exaCtIy one branCh, then we add 5¢1170f... file-1.txt 5¢1170f... file-1.txt
the changed version to the merge
comm It . 3eac351... file-2.txt 3eac351... file-2.txt

e0fb7e0... file-3.txt e0fb7e0... file-3.txt e0fb7e0... file-3.txt

e This makes sense since we want to
keep as many of the changes that
were made in each branch.

e |f a new file was created in exactly ierged Resul
one branch then that file also gets m
added to the merge commit.

c8cf3ae... file-4.txt c8cf3ae... file-4.txt ae3cfc1 . file-4 .txt

Example: If the my-feature branch 987bCC2 e
created a file called foo.py and the
other branch didn't, then foo.py 0b760. fle-3 b
can be added to the merge commit

as |IS. ae30fc1 . file-4.txt

34

Merging in Git

For the files that were changed in both
branches we need to look at their
contents and go line by line.

Git compares each file to the same file
iIn the common ancestor.

my-feature Common Ancestor
Git uses a diffing algorithm to compare Line 1 Line one
the files and come up with a list of Line 2 Line two
Changes. Line three Line three

Line four Line four

Git has built-in support for 4 different
diffing algorithms:

patience, minimal, histogram, and
myers.

By default Git uses the Myers
algorithm.

35

master

Line one
Line two

Line three

Line no.

Z

Merging in Git

 The lines that haven't changed
can be added 1{0) the fina| my-feature Common Ancestor master

merged file as is. Line 1 Line one Line one

Line 2 Line two Line two
Line three Line three Line three
Line four Line four Line no. 4

e |In case the line was changed in
exactly one branch then we

\ Merged Result
. Line 1
add the changed version to the e 5
merge commit. Line three

Line no. 4

This includes the addition and
deletion of lines.

36

Merging in Git

e |[n case the same line was
changed in both branches then
we have a merge conflict.

<<<<<<< HEAD
This 1s the change 1n master

e Git will add the changes from
both branches into the final file
with some additional markers:
<<LL<LLL<L, , SS>S>S>>>

This 1s the change 1in my-feature
>>>>>>> my-feature

37

Merging in Git

e |In order to proceed with the
merge the user must fix all the
conflicts by editing the parts of
the files that are in conflict,
saving the file, and adding it to
the staging area with git add’

e Once all the conflicts have been
resolved, the merge can
proceed by creating the merge
commit containing all the
changes that were added Iin the
previous steps.

38

<<<<<<<
This 1s

This 1s
SDODO>>>

HEAD
the change in master

the change in my-feature
my—-feature

Rebasing commits

e Rebasing in Git is a very powerful operation that can do a lot of different things.

* |t can be done interactively and non interactively.

e Here we will focus on rebasing in the sense of changing the root commit that a
set of commits are based on. This is an alternative to the merging we saw

earlier.

T I
master
_II_I LA _;_.l_l-._;_Z L

Rebasing commits

* To rebase a branch:
1. git checkout <branch name>
2. git rebase <new base branch>

e Example:
"git checkout feature
‘git rebase master

/O‘-O

Rebase

Merge

Rebasing gives a linear
commit history.

Merging results in a
complicated graph with many
diverging and converging
branches.

Rebasing does not require
extra commits.

Merging leads to the creation
of extra merge commits that
clutter the history.

In the worst case, rebasing
might require a merge conflict
resolution session per commit.

Worst case only a single
merge conflict resolution
session Is required.

Rebasing rewrites history and
destroys chronological order.

Preserves complete history
and chronological order.

41

Squashing commits

Let’s say we are in the '$ echo 'some foo code' > foo.py

- : : '$ git add foo.py && git commit -m 'new feature'
situation shown on the rlght' [master c2f@c73] new feature

1 file changed, 1 insertion(+)
We added a new feature. create mode 100644 foo.py
'$ echo 'some fixes' >> foo.py
$ git add foo.py && git commit -m 'fix some bugs'
We made some fixes to it. [master dd1@eb5] fix some bugs
1 file changed, 1 insertion(+)

. '$ echo 'more fixes' >> foo.py
We have 3 new commits $ git add foo.py && git commit -m 'fix formatting'

but, it would be nice if there [master f6ad28a] fix formatting
: file ch S 1 i :
was only 1 new commit 1 file changed, 1 insertion(+)

o git log ——graph ——all —-oneline
containing the feature and f6ad28a (HEAD -> master) fix formatting
all the fixes.

dd10eb5 fix some bugs
c2f@c/73 new feature
45d7b3c 1ntial commit

* X %X X% &£

42

Squashing commits

e it rebase -i <new base or

parent commit> can be $ echo 'some foo code' > foo.py

$ git add foo.py & & git commit -m 'new feature'
used to SquaSh a bunch of [master c2f@c73] new feature

commits into a single 1 file changed, 1 insertion(+)
commit. create mode 100644 foo.py
'$ echo 'some fixes' >> foo.py
$ git add foo.py && git commit -m 'fix some bugs'
e In this case we will do: [master dd1@eb5] fix some bugs

‘git rebase -i 45d7b3c’ since 1 file changed, 1 insertion(+)
'$ echo 'more fixes' >> foo.py

we want the new squashed g git add foo.py && git commit -m 'fix formatting'

commit to be based on [master fé6ad28a] fix formatting
\ . 1 file changed, 1 insertion(+)
45d7b3c '$ git log ——graph ——all —-oneline
x f6ad28a (HEAD -> master) fix formatting
e The -i flag means * dd1l@eb5 fix some bugs
: : * c2f@c73 new feature
Interactive. * 45d7b3c 1ntial commit
'$ git rebase —-i 45d7b3c

43

Squashing commits

* This opens up the editor sinCe ,ick c2rec73 new feature

pick dd1@eb5 fix some bugs

we chose to rebase pick féad28a fix formatting
interactively.

Rebase 45d7b3c..f6éad28a onto 45d7b3c (3 commands)

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
edit <commit> = use commit, but stop for amending
squash <commit> = use commit, but meld into previous commit
fixup <commit> = like "squash", but discard this commit's log message
exec <command> = run command (the rest of the line) using shell
break = stop here (continue rebase later with 'git rebase —-continue')
drop <commit> remove commit
label <label> label current HEAD with a name
reset <label> reset HEAD to a label
merge [-C <commit> | —-c <commit>] <label> [# <oneline>]
create a merge commit using the original merge commit's
message (or the oneline, if no original merge commit was
specified). Use —-c <commit> to reword the commit message.

At the top, we can see the
commits involved in the
rebase.

-

-~ - - -~ - -~ -

e Below that, there are some
comments. The commands
that we can use are listed
here.

S QO T X Hhwvw O

-~

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

* For each commit we need to
specify which command to
use.

However, if you remove everything, the rebase will be aborted.

HHFHHFHHFHFAFHFHFHFTHRAFHAFTHFHTFHFHFEHHTFHHRHTHDED

44

Squashing commits

pick c2f@c73 new feature

There are 2 Commands pick dd1@eb5 fix some bugs
. pick féad28a fix formatting

related to squashing:

‘'squash and fixup

Rebase 45d7b3c..f6éad28a onto 45d7b3c (3 commands)

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
edit <commit> = use commit, but stop for amending
squash <commit> = use commit, but meld into previous commit
fixup <commit> = like "squash", but discard this commit's log message
exec <command> = run command (the rest of the line) using shell
break = stop here (continue rebase later with 'git rebase —-continue')
drop <commit> remove commit
label <label> label current HEAD with a name
reset <label> reset HEAD to a label
merge [-C <commit> | —-c <commit>] <label> [# <oneline>]
create a merge commit using the original merge commit's
message (or the oneline, if no original merge commit was
specified). Use —-c <commit> to reword the commit message.

-

‘squash’ will squash the
commit keeping the commit
message.

-~ - - -~ - -~ -

S QO T X Hhwvw O

-~

fixup will squash getting rid
of the commit message.

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

Each command also has a
shorthand: s for squash, f
for fixup, etc.

However, if you remove everything, the rebase will be aborted.

HHFHHFHHFHFAFHFHFHFTHRAFHAFTHFHTFHFHFEHHTFHHRHTHDED

45

Squashing commits

pick c2f@c73 new feature
dd10eb5 fix some bugs
fé6ad28a fix formatting

e Here we choose fixup for
the 2nd and 3rd commit.

Rebase 45d7b3c..f6ad28a onto 45d7b3c (3 commands)

Commands:

p, pick <commit> = use commit

r, reword <commit> = use commit, but edit the commit message

e, edit <commit> = use commit, but stop for amending

s, squash <commit> = use commit, but meld into previous commit

f, fixup <commit> = like "squash", but discard this commit's log message
X, exec <command> = run command (the rest of the line) using shell

b, break = stop here (continue rebase later with 'git rebase —-continue')
drop <commit> = remove commit

1, label <label> label current HEAD with a name

t, reset <label> reset HEAD to a label

m, merge [-C <commit> | —-c <commit>] <label> [# <oneline>]

create a merge commit using the original merge commit's

message (or the oneline, if no original merge commit was
specified). Use —-c <commit> to reword the commit message.

e We will leave the 1st commit
as pick since we want to
keep its commit message.

e Note: we could also have
chosen reword for the 1st
commit If we wanted to
change the final commit
message.

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

HHFHHFHAFHFAFHFHFHFHFHRFTHFHTEHFETHEHTEHFEHEHTEHFEHHEEEH
e e Q

46

Squashing commits

e Save and quit the editor.

e \We can see that Git created
a new squashed commit that
contains the changes from

all 3 commits. $ git rebase -1 45d7b3c
Successfully rebased and updated refs/heads/master.

| . '$ git log ——graph ——all —-oneline
e The commit message is % 152b4f8 (HEAD —-> master) new feature

same as the first commit * 45d7b3c 1intial commit
since we used fixup to

throw away the commit

messages of the other 2

commits.

47

Adding remote repos

‘git remote -v lists the remote
repos you have added.

‘git remote add
<remote_name> <repo_url>
adds a new remote.

The convention is to use the
name “upstream” for the
original repo and “origin” for
your fork of that repo on
GitHub, GitLab, etc.

‘git remote remove
<remote name> removes a
remote.

$ git remote -v
$ git remote add upstream git@github.com:torvalds/linux.git
$ git remote -v

upstream
upstream

git@github.com:torvalds/linux.git (fetch)
git@github.com:torvalds/linux.git (push)

$ git remote add origin git@github.com:HarikrishnanBalagopal/linux.git
$ git remote -v

origin
origin
upstream
upstream

git@github.com:HarikrishnanBalagopal/linux.git (fetch)

git@github.com:HarikrishnanBalagopal/linux.git (push)
git@github.com:torvalds/linux.git (fetch)
git@github.com:torvalds/linux.git (push)

$ git remote remove origin
$ git remote -v

upstream
upstream

s B

48

git@github.com:torvalds/linux.git (fetch)
git@github.com:torvalds/linux.git (push)

Fetching from remote repos

$ git log ——graph —-all

x commit 63091a713cdOb4d2ddafbf78d925e4a093ca31c5 (HEAD -> main,
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Sat Feb 20 22:30:19 2021 +0530

initial commit
$ git remote -v

° ' ' origin git@github.com:HarikrishnanBalagopal/myapp.git (fetch)
Slmply addlng a remote origin git®github.com:HarikrishnanBalagopal/myapp.git (push)

doesn’t fetch any data from s git fetch —-all
[Fetching origin

the remote. remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
'remote: Compressing objects: 100% (3/3), done.

o i A remote: Total 3 (delta @), reused © (delta 0), pack-reused 0
glt fetCh <rem0te—name> Unpacking objects: 100% (3/3), 4.49 KiB | 1.12 MiB/s, done.

fetCheS Commits and From github.com:HarikrishnanBalagopal/myapp
63091a7..5ecebba mailn —> origin/main
branches from the remote. s git 109 ——graph —all
x commit 5eceb6ab5a9cb46bd473154d65bc18808b0ffc81c ()

Author: HarikrishnanBalagopal <harikrishmenon®gmail.com>

° ‘git fetch _a||‘ to fetch data | Date: Sat Feb 20 22:32:54 2021 +0530

from all the remotes. added a license

* commit 63091a713cd@b4d2ddafbf78d925e4a093ca31c5 (HEAD -> main)
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Sat Feb 20 22:30:19 2021 +0530

initial commit

s B

49

Syncing with remote repos

$ git log ——graph —-all
 commlit S5eceb6éaba9cb46bd473154d65bc18808b0ffc81c ()

: : Author: HarikrishnanBalagopal <harikrishmenon®gmail.com>
* After fetching, the new commits Date: Sat Feb 20 22:32:54 2021 +0530

and branches show up in our local |

repo’s history. However all the local

branches remain where they were. * commit 63091a713cd@b4d2ddafbf78d925e4a093ca31c5 (HEAD -> main)
Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>
Date: Sat Feb 20 22:30:19 2021 +0530

added a license

e \We can move our local branch to
: : initial commit
point to the same commit as the git merge —ffonly origin/main

remote branch with a fast forward updating 63091a7..5ecebéa

. Fast—forward
merge.
LICENSE | 201 ++++++++++++++++++++++++H+HHH+ -

‘git merge —ff-only 1 file changed, 201 insertions(+)

<remote_name>/<branch_name>’ create mode 100644 LICENSE
$ git log ——graph —-all

x commit S5eceb6aba9cb46bd473154d65bc18808b0ffc81c (HEAD -> main,)
° ith ar - | Author: HarikrishnanBalagopal <harikrishmenon®gmail.com>
W.e can do the same w a rebase Date: Sat Feb 20 22:32:54 2021 +0530
git rebase <remote_name>/
<branch name>’ added a license

* commlt 63091a713cd@b4d2ddafbf78d925e4a093ca31ch
e Alternatively ‘git pU”‘ does both a Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>

: DER-K Sat Feb 20 22:30:19 2021 +0530
fetch and a merge in one go.
initial commit

s B

50

Pushing changes to remotes

$ git checkout -b add-gitignore
Switched to a new branch 'add-gitignore’
. . '$ echo '.vscode/' > .gitignore
¢ glt pUSh pushes the new $ git add -A && git commit -m 'added gitignore'

: [add-gitignore cae@e44] added gitignore
commits on the local branch t0 "1 fiie changed, 1 insertion(+)

the corresponding branch on create mode 100644 .gitignore
$ git log ——graph —--all —-oneline

'the remote. * cae@e4s4 (HEAD -> add-gitignore) added gitignore
% Becebéba (, main) added a license

* 63091a7 initial commit

e In order for ‘git push' to work ' 9it push

fatal: The current branch add-gitignore has no upstream branch.

we need to COnfigure aremote To push the current branch and set the remote as upstream, use

branch: git push ——-set-upstream origin add-gitignore
glt branCh —set—upstream— $ git push —-set—upstream origin add-gitignore
‘t0=<rem0te_name>/ Enumerating objects: 4, done.

b h \ Counting objects: 100% (4/4), done.
<pbrancn_name Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 989 bytes | 989.00 KiB/s, done.

e You can also configure the Total 3 (delta @), reused @ (delta @), pack-reused ©
. .] remote:

remOte Whlle pUShmg' remote: Create a pull request for 'add-gitignore' on GitHub by visiting:

‘glt pUSh —Set—upstream remote: https://github.com/HarikrishnanBalagopal/myapp/pull/new/add—gitignore
remote:

<remote name> To github.com:HarikrishnanBalagopal/myapp.git

\ * [new branch] add—-gitignore -> add-gitignore

<branCh—name> Branch 'add-gitignore' set up to track remote branch 'add-gitignore' from 'origin'
$ git log ——graph ——all —-oneline
% cae@e44 (HEAD -> add-gitignore,) added gitignore
% Secehba (, main) added a license

* 63091a7 initial commit

Git hosting and
workflows

Git hosting services

Git is NOT GitHub.

GitHub, GitLab, BitBucket, etc. are websites that offers free
hosting for remote git repositories.

GitHub Enterprise and GitLab are software that can be
hosted on your own servers.

For example: IBM runs a GitHub Enterprise instance on
github.ibm.com for code internal to the company.

GitLab is open source software. GitHub Enterprise is
licensed software.

53

http://github.ibm.com

GitHub is the most popular of all the Git
hosting services.

Launched on April 10, 2008.

Acquired by Microsoft for $7.5 billion in
June of 2018.

Largest user base (over 56 million
users). Some of the largest open

sources projects (like Linux) are on
GitHub.

The fundamental software that
underpins GitHub is Git.

The GitHub user interface was written
using Ruby on Rails and Erlang by
GitHub developers Wanstrath, Hyett,
and Preston-Werner.

54

What is GitHub?

/ Pull requests Issues Marketplace Explore

* GitHub exposes (almost) all of the
functionality of Git through the

10 Pull requests (1 L)) Discussions () Actions [Projects 0 Wiki @ Security |~ Insights

¥ main ~ ¥ 3 branches © 9tags Go to file Add file ~ ‘ ¥ Code ~

website. So we can do everything

We COUId do from the CLI, USing “. ashokponkumar chore: Move to go 1.16 (#438) ..

« 64b2183 4 daysago O 311 commits

the UI.

We can edit a file, create a new
file, delete files, etc. and make a
new commit with the changes.

The entire commit history,
branches, tags, contributors, etc.
are listed on the website.

GitHub offers both public and
private repositories.

55

rREErAErRErEirBl-rRErAlrBRrAErEl BN BN 2F BN BN BF BN &

.github

cmd
containerconfig
docs

imgs

internal
samples
scripts

types
.dockerignore
.gitignore
.golangci.yml
.grenrc.js
Dockerfile
LICENSE
Makefile
README.md
USAGE.md

code-of-conduct.md

fix: replace gren with custom action because gren doesn't handle pre...
feat: Add validate framework to list TODO items after move2kube exe...

fix: Add support for older kernels which does not support metacopy fl...

chore: Change default branch to main (#327)

Replace the ascii cinema embedding link with a svg

fix: target path should be absolute (#436)

updated the samples to keep up with move2kube-demos

chore: allow install script to install any tag (#424)

feat: Move container execution logic out of cnb containerizer (#425)
add codecov

fix: .brew_home is created during brew bottling causing git tree stat...

Add golangci config

fix: replace gren with custom action because gren doesn't handle pre...

chore: Move to go 1.16 (#438)

initial working version of move2kube

fix: Remove per-service port question (#407)
chore: add brew install instructions (#375)
Change website to konveyor.io

Update slack ref in usage and code of conduct

9 days ago

8 days ago

2 months ago
2 months ago
4 months ago
5 days ago

3 months ago
13 days ago
8 days ago

5 months ago
2 months ago
5 months ago
9 days ago

4 days ago

5 months ago
20 days ago
2 months ago
3 months ago

5 months ago

GitHub forking

Fork means to make a copy of a
repo.

To fork, we simply go to the repo
we want to make a copy of and
click the “fork” button.

The copy is stored as a new repo in
our account.

Changes on the fork do not affect
the original repo we forked.

This gives us an easy way to mess
around and make changes without
messing up the history of the
original repo.

56

® Unwatch ~

Settings

1

W Star

0

? Fork

Cloning a repo on GitHub

22 1 contributor

ad files Find file
e qit clone <repo_url>

° We can get the repo urI by aw file Upload files Find file

clicking the “Clone or

download” button. Clone with HTTPS @

Use Git or checkout with sing the web URL.

https://github.ibm.com/Harikrishnan-E [&

Open in Desktop Download ZIP

GitHub pull requests

Pull request is a misnomer. Merge request is a better name.
(GitLab calls it merge requests.)

GitHub allows us to a make request to merge one branch in a repo with
another branch. We can also merge branches across forks.

The request can be made on our own repos and on repos we don't
own/control.

The maintainers of the repo will review the changes you want to merge
and decide what to do. They might request that we make some
changes to the PR before it can be merged.

A pull request (PR) can be used to merge a feature or bug fix that we
have implemented on our fork into the original repo.

58

GitHub PR based workflow

e Setup (we only need to do this one time):
1. Fork the “upstream” repo. We will call our fork “origin”.

2. Clone origin to your laptop/desktop and add upstream as a
remote.

59

GitHub PR based workflow

o Workflow:
1. Create a branch on our local
repo.

2. Make some commits.

3. Push the commits to origin.

60

$ x
*x commit b811e9d958e7411caaf3a209f9ab0843a7a18535 (HEAD -> main, ,

Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>
Date: Thu Feb 25 03:23:45 2021 +0530

add readme and license

$ 1s

LICENSE README . md
'$ git checkout -b myfeature
Switched to a new branch 'myfeature'’
'$ echo 'print("hello there!")' > main.py
'$ git add -A && git commit -m 'add a greeting' && git push -u origin myfeature
[myfeature 6992d5c] add a greeting

1 file changed, 1 insertion(+)

create mode 100644 main.py

Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.

Delta compression using up to 12 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 999 bytes | 999.00 KiB/s, done.
Total 3 (delta 9), reused O (delta @), pack-reused ©

remote:

remote: Create a pull request for 'myfeature' on GitHub by visiting:
remote: https://github.com/HarikrishnanBalagopal/my—app/pull/new/myfeature
remote:

To github.com:HarikrishnanBalagopal/my—-app.git

* [new branch] myfeature —-> myfeature

Branch 'myfeature' set up to track remote branch 'myfeature' from 'origin'.
$ x

* commit 6992d5cbd6539fd6é6b41836ca38882563Ff9c9cc7 (HEAD -> myfeature,

Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>
DERYK Thu Feb 25 03:53:24 2021 +0530

add a greeting

x commit b811e9d958e7411caaf3a209f9ab0843a7a18535 () , main)
Author: Harikrishnan Balagopal <harikrishmenon®gmail.com>
Date: Thu Feb 25 03:23:45 2021 +0530

add readme and license

s 1

GitHub PR based workflow

¥ HarikrishnanBalagopal:myfeature had recent pushes 3 minutes ago Compare & pull request \

¥ main ~ F 1branch © 0tags Go to file Add file ~ ¥ Code ~ \

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

e \Workflow:
4. Go to the upstream repo N e ——] e e ———————————] ————
and make a PR against the + Able to merge. These branches can be automatically merged.
master/main branch.

T2
#
-

add a greeting Helpful
GitHub

H B I i=<¢& =Zi=Z @8 ©@FZ -

Write Preview

5. The maintainers will review
the PR and request changes.

description of changes in the PR

Attach files by dragging & dropping, selecting or pasting them. (M4 |

| Create pull request v
Allow edits by maintainers () | pulireq

o1

GitHub PR review

This pull request is waiting on your review. Add your review

Maintainers of a repo can review PRs :
on that repo. add a greeting #

{9 Open | HarikrishnanBala... wants to merge 1 commit into HarikrishnanBalagopalIITK:main frOm HarikrishnanBalagopal:myfe

They can add comments on each line.

Conversation (0 Commits (1 Checks (0 Files changed 1
We can reply to these comments o ensll s SRS tE S SRt S
individually and this often leads to P
multiple independent threads of
conversation. L+ print("hello there!")
Write Preview H B I = <& & = = @ 2 «-~

Maintainers can finish the review with 3
different statuses:

Approve, Comment or Request

Changes. Attach files by dragging & dropping, selecting or pasting them. @

Can we factor out greeting to a separate function?\

Cancel Add single comment Start a review

Don’t panic if they request changes
since this is a VERY common thing to }0
do.

Changes requested
1 review requesting changes Learn more.

82 1 change requested

GitHub PR based workflow

o Workflow:

'$ git add -A && git commit -m 'refactor greeting' && git push
[myfeature e9d585b] refactor greeting

6. Make the necessary changes 1 file changed, 5 insertions(+), 1 deletion(-)

and push the commits to origin.
The PR will update
automatically. Now we can
request another review.

/. Repeat step 6 until they
accept the PR. The PR then
gets merged.

8. We can now delete the
feature branch from our local
repo and origin.

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 979 bytes | 979.00 KiB/s, done.
Total 3 (delta 1), reused © (delta ©), pack-reused 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:HarikrishnanBalagopal/my-app.git
6992d5c..e9d585b myfeature —> myfeature
$ x
*x commit e9d585b59ea3cd62323006771394e55b9885d7fc (HEAD -> myfeature,
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Thu Feb 25 04:26:11 2021 +0530

refactor greeting
* commit 6992d5cbd6539fd6b41836ca38882563ffF9c9cc?
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Thu Feb 25 03:53:24 2021 +0530
add a greeting
x commit b811e9d958e7411caaf3a209f9ab0843a7a18535 (,

Author: Harikrishnan Balagopal <harikrishmenon@®gmail.com>
DERY-K Thu Feb 25 03:23:45 2021 +0530

e

add readme and license

I

main)

GitHub PR based workflow

e As an additional step we can sync

the main branch on our local repo

with upstream to get the changes we

just merged.

e Then we push the changes to the
main branch of origin.

e Now we are back where we started

and can start working on the next
PR.

e |t is also possible to have multiple
PRs going at the same time.

o4

$ git fetch —-all
Fetching origin
Fetching upstream
remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta @), reused 1 (delta @), pack-reused 0
Unpacking objects: 100% (3/3), 765 bytes | 382.00 KiB/s, done.
From github.com:HarikrishnanBalagopalIITK/my—app
* [new branch] main —> upstream/main
$ x
* commit 53bf8c014873581cdedf5a9933878cal670f3180 ()
Author: HarikrishnanBalagopal <harikrishmenon®gmail.com>
Date: Thu Feb 25 04:33:35 2021 +0530

add a greeting (#1)

% add a greeting

% refactor greeting
commit e9d585b59ea3cd62323006771394e55b9885d7fc (HEAD -> myfeature,
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
DERY-K Thu Feb 25 04:26:11 2021 +0530

refactor greeting

commit 6992d5cbd6539fd6é6b41836ca38882563Ff9c9cc?
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
DERY-K Thu Feb 25 03:53:24 2021 +0530

add a greeting

 commit b811e9d958e7411caaf3a209f9ab0843a7a18535 (,
Author: Harikrishnan Balagopal <harikrishmenon@gmail.com>
Date: Thu Feb 25 03:23:45 2021 +0530

add readme and license

s

, main)

Enterprise workflows

Open source workflows

Workflows tend to depend on
company policy and team
leads.

Workflows depend on project
size and scope, number of
contributors, history/project
origins, code fregquency, etc.

May have access to commit
directly to the main/master
branch.

Usually have no access to
commit directly to any branch.
Have to fork and clone.

There may be force pushes to
the upstream repo. Especially
If sensitive info was added
accidentally.

Almost never force push since
it requires a flag day, and
requires a large number of
users to sync the changes.

Changes might be made to
the repo with little to no public
discussion.

All changes need to be
discussed and agreed to Iin
public forums before they can
be merged.

65

Best practices

Always fork and clone the repo to start contributing.

Never commit directly to main/master branch. Always make a new
branch.

Always link your pull request to an existing issue on the Github repo. If
there are no appropriate issues then create one.

Each open source project will have their own set of standards
regarding commit messages, issue format, PR titles, PR review
process, license agreements, etc.

Read the CONTRIBUTING.md file if it exists. Every large open source
project will have one next to the README.md’, with the details on how
to contribute.

66

GitHub CLI

‘gh’ is a tool for interacting with
GitHub from the command line:
https://github.com/cli/cli

Available for MacOS, Linux and
Windows.

‘gh pr checkout <pr_number> is an
easy way to checkout a PR for
review and testing locally.

The gh tool exposes all of the
GitHub specific functionality such
as, making comments on issues and
PRs, creating new issues and PRs,
submitting PR reviews, and a lot
more.

o7

$ gh pr status

Current branch
There is no pull request associated with [develop]

Created by you
#1011 Update readme [readme-fix]
- Checks pending - Review required

Requesting a code review from you
#1015 Improve error handling [better-error-handling]
v Checks passing

https://github.com/cli/cli

Resources

Videos:
- Dives into git internals to give a better understanding.
Lecture 6: Version Control (git) (2020)

- Only 7 minutes and straight to the point. Perhaps a bit overwhelming.
Git Internals - Git Objects

- Long but goes into much more depth, including a look at the actual files and folders inside.
Deep Dive into Git - Edward Thomson

Books:
- The official git book. https://git-scm.com/book/en/v2

Interactive guide for fixing mistakes:
- https://sukima.github.io/GitFixUm/

Useful info:
- How to write meaningful commit messages: https://www.conventionalcommits.org/en/v1.0.0/
- Workflow: https://github.com/konveyor/move2kube/blob/main/qgit-workflow.md

Slides:
https://github.ibm.com/Harikrishnan-Balagopal/git-exercises/blob/master/presentation.pdf

69

https://youtu.be/2sjqTHE0zok
https://youtu.be/MyvyqdQ3OjI
https://youtu.be/fBP18-taaNw
https://git-scm.com/book/en/v2
https://sukima.github.io/GitFixUm/
https://www.conventionalcommits.org/en/v1.0.0/
https://github.com/konveyor/move2kube/blob/main/git-workflow.md
https://github.ibm.com/Harikrishnan-Balagopal/git-exercises/blob/master/presentation.pdf

There will a session Iin April on
Best Practices for Open
Source Projects

Thank You! @

