
 Git Workflows and Best
Practices for Open

Source Projects

1

Harikrishnan Balagopal

github.com/HarikrishnanBalagopal

Completed M.Tech in CSE from IIT Kanpur. 
Thesis was on text generation and NLP.

Joined IBM IRL as a software engineer in
August 2020.

Currently maintaining the open source
project Move2Kube.

2

https://github.com/HarikrishnanBalagopal

github.com/konveyor/move2kube

3

https://github.com/konveyor/move2kube

4

Fundamentals of Git

5

What is Git?

• Git is by far, the most widely
used modern version control
system in the world today.

• Git is a mature, actively
maintained open source project
originally developed in 2005 by
Linus Torvalds.

• Git is distributed and is
designed with performance,
security and flexibility in mind.

6

Who has done this before?

7

Git lets you maintain multiple
versions of your software

• Fast.

• Memory efficient. No duplicate files or folders.

• No need to manually copy and paste files and folders.

• No need to be online, or connect to a server just to work on your code.

• Tries its best to never lose any of your data EVEN when you use the
wrong Git commands.

• Easy to quickly switch to a different version of your code and work on
some experimental feature or bug fix.

• Battle tested daily by the most demanding projects in the world.

8

How Git stores your code

9

How Git stores your code

10

How Git stores your code

- A commit is a snapshot of the entire repository (not a diff).

- Commits are immutable.

- Commits point back in time to their parent commits.

11

How Git stores your code

- A commit is a snapshot of the entire repository (not a diff).

- Commits are immutable.

- Commits point back in time to their parent commits.

- A branch is a pointer to a commit.

- If you are on a branch and you make a new commit then 
the branch will update to point to the new commit.

- The default branch is usually called `master` or `main` but 
you can change it to whatever you want.

- You can think of branches as a way to put a pin 📌 in 
something you are working on and want to return to later.
12

https://emojipedia.org/pushpin/#:~:text=Emoji%20Meaning,head%20to%20the%20upper%20right.&text=Pushpin%20was%20approved%20as%20part,to%20Emoji%201.0%20in%202015.

Git terminology
• Repository (repo): Git stores the code in repositories.

• Local repo: A repo on our local machine (laptop/desktop).

• Remote repo: A repo hosted on some server somewhere.

• upstream: The remote repo we want to contribute to.
Example: https://github.com/torvalds/linux.git

• origin: Our copy of the upstream repo. This is also a remote
repository, usually created by forking the upstream repo on
GitHub, GitLab, etc. 
Example: https://github.com/myusername/linux.git

13

How to get started
• Create a new repo on your local machine (laptop/desktop). 

Go to the directory containing the source code and do `git init`

• Clone a remote repo (from GitHub, GitLab, etc.) 
 
 
 
 
 

2 ways to get started:

14

Creating a local repo
• `git init` creates a hidden

directory called `.git` containing
everything that Git uses.

• Any files/directories we add to
Git will be hashed and stored
under the `objects` directory.

• The file called HEAD contains
the branch/tag/commit SHA we
have checked out.

• When we create new branches
or tags, their metadata will be
stored under the `refs` directory.

15

Git is a content addressable

key value store

- We can insert any kind of content into a Git repository, and Git will hand us back a unique 
key that we can use to retrieve that content later.

- This key is just the SHA-1 hash of the content. So if the content changes the key 
will also change (hence “content addressable”).

- To turn a folder into a git repository we can use the command `git init`. This creates 
a hidden folder called `.git` that contains all the information that Git uses.

16

Git is a content addressable

key value store

- We can insert an object using the `git hash-object` command.

- Git will return the 40 character SHA-1 hash.

- The object is stored in the `.git/objects` folder.

- We can see the content of the object using the `git cat-file` command.

- This type of object is called a blob (Binary Large OBject) since it stores 
the actual content of files.

- Git has 2 other types of objects called Trees and Commits.

17

Git tree
Trees are made up of subtrees and blobs.

Trees correspond to directories and blobs correspond to files.

Trees are also hashed just like everything else in Git.

18

Git commit
• A tree represent a snapshot of the repo at a point in time.

However it doesn’t have any information about who saved the
snapshot, when it was saved, or why it was saved.

• A commit contains all this extra information. Author, committer,
date and time, a commit message giving the reason for the
commit, etc.

• A commit points to a tree.

19

Git internal graph
• Putting it all together we

get a graph made of
commits, trees and blobs.

• There are no cycles in this
graph.

• The trees pointed to by
later commits can still
reference trees and blobs
from earlier commits.

• This gives us a persistent
data structure without
redundancy.

20

Git commands

21

3 important areas in Git
• Working directory: This contains

the files and directories you
have checked out currently on
your filesystem (excluding the
`.git` directory).

• Staging area (also called Index):
This provides a temporary space
where you can put changes that
you want in the next commit.

• Repository: This is the graph of
commits (snapshots) that Git
maintains. It contains all the
blobs, trees, commits, branches,
tags, etc.

22

Making a commit
• To make a new commit first

we do `git add <filename1>
<filename2>` to specify the
changes we want in the
commit.

• These changes are now in
the staging area. We can
see this by running `git
status`

• Then we do `git commit -m
<commit message>` to
finalize and make the
commit itself.

23

Debugging Git
• `git status` tells us what branch

we have checked out. It also
tells us the differences between
the working directory and the
last commit.

• `git log —graph —all` shows the
entire graph containing the
commits, branches, tags, etc.

• Use `git log —graph —all —
oneline` to only show the first
line of the commit messages.

24

Creating and deleting a branch
• `git branch` lists the branches

• `git branch <branch name>` creates a
new branch pointing to the commit we
are currently on.

• `git branch -d <branch name>` to delete a
branch in your local repo.

• `git branch -rd <branch name>` to delete
a branch we fetched from a remote.
Note: This doesn’t delete it on the remote
repo. To delete it on the remote repo: 
`git push -d <remote_name>
<branch_name>`

• To create a new branch and immediately
check it out we can use `git checkout -b
<branch name>`

25

Creating a commit on a branch

• In order to create a commit on
a branch we need to checkout
that branch using `git checkout
<branch name>`

• When you create a new
commit, Git will automatically
move the branch you have
checked out to point to the new
commit.

26

Ignoring files and folders
• Usually we have some files

and folders that we don’t
want to commit (build output,
`node_modules`, etc.).

• Create a `.gitignore` file in the
base of the repo containing
all the paths that should be
ignored.

• It is also possible to have
multiple `.gitignore` files (one
per folder). Each `.gitignore`
file can have paths relative to
the file itself.

27

Creating and deleting a tag
• A tag is a pointer to a commit.

• `git tag` lists all the tags.

• `git tag <tag name>` creates a new tag pointing to the commit we
are currently on. `git tag -d <tag name>` deletes the tag.

28

Difference between a
branch and a tag

• Similarities: Both are pointers to a commit.

• When you checkout a tag and make a commit the tag will not move.

• When you checkout a branch and make a commit the branch will move to
point to the new commit.

• Note: Only the branch you have checked out will move. All other branches
stay in place.

29

Difference between a
branch and a tag

• Tags can be lightweight or annotated.

• Annotated tags have a tagger, time, and a message associated with them 
(Similar to commits).

• `git tag -a <tag name> -m <message>` to create an annotated tag.

30

Merging in Git
• When we start working on a new

feature, we create a branch and
make some commits on it.

• When we are done working on our
feature and want to add it to the
master branch, we can do a merge.

• To do a merge: 
1. `git checkout <branch you want
to merge into>` 
2. `git merge <branch you want to
merge from>`

• This will create a new merge
commit that contains the changes
from both branches.

31

Merging in Git

• Git does what is known as a 3-
way merge.

• Given 2 commits to merge, git
finds a 3rd commit that is the
lowest common ancestor of the
2 commits.

• Then it compares all 3 commits
to each other to decide what
should go in the final merged
commit.

32

Merging in Git

• We go through each file in the
common ancestor commit and
compare it to the
corresponding file in the other 2
commits to see if it was
changed.

• The files that haven't changed
can be added to the merge
commit as is.

33

Merging in Git
• In case the file was changed in

exactly one branch, then we add
the changed version to the merge
commit.

• This makes sense since we want to
keep as many of the changes that
were made in each branch.

• If a new file was created in exactly
one branch then that file also gets
added to the merge commit. 
Example: If the `my-feature` branch
created a file called `foo.py` and the
other branch didn't, then `foo.py`
can be added to the merge commit
as is.

34

Merging in Git
• For the files that were changed in both

branches we need to look at their
contents and go line by line.

• Git compares each file to the same file
in the common ancestor.

• Git uses a diffing algorithm to compare
the files and come up with a list of
changes.

• Git has built-in support for 4 different
diffing algorithms: 
patience, minimal, histogram, and
myers.

• By default Git uses the Myers
algorithm.

35

Merging in Git

• The lines that haven't changed
can be added to the final
merged file as is. 

• In case the line was changed in
exactly one branch then we
add the changed version to the
merge commit. 
This includes the addition and
deletion of lines.

36

Merging in Git

• In case the same line was
changed in both branches then
we have a merge conflict.

• Git will add the changes from
both branches into the final file
with some additional markers:
<<<<<<<, =======, >>>>>>>

37

Merging in Git
• In order to proceed with the

merge the user must fix all the
conflicts by editing the parts of
the files that are in conflict,
saving the file, and adding it to
the staging area with `git add`

• Once all the conflicts have been
resolved, the merge can
proceed by creating the merge
commit containing all the
changes that were added in the
previous steps.

38

Rebasing commits
• Rebasing in Git is a very powerful operation that can do a lot of different things.

• It can be done interactively and non interactively.

• Here we will focus on rebasing in the sense of changing the root commit that a
set of commits are based on. This is an alternative to the merging we saw
earlier.

39

Rebasing commits
• To rebase a branch: 

1. `git checkout <branch name>` 
2. `git rebase <new base branch>`

• Example: 
`git checkout feature` 
`git rebase master`

40

Rebase Merge

Rebasing gives a linear
commit history.

Merging results in a
complicated graph with many

diverging and converging
branches.

Rebasing does not require
extra commits.

Merging leads to the creation
of extra merge commits that

clutter the history.

In the worst case, rebasing
might require a merge conflict
resolution session per commit.

Worst case only a single
merge conflict resolution

session is required.

Rebasing rewrites history and
destroys chronological order.

Preserves complete history
and chronological order.

41

Squashing commits

• Let’s say we are in the
situation shown on the right.

• We added a new feature.

• We made some fixes to it.

• We have 3 new commits
but, it would be nice if there
was only 1 new commit
containing the feature and
all the fixes.

42

Squashing commits
• `git rebase -i <new base or

parent commit>` can be
used to squash a bunch of
commits into a single
commit.

• In this case we will do: 
`git rebase -i 45d7b3c` since
we want the new squashed
commit to be based on
`45d7b3c`

• The `-i` flag means
interactive.

43

Squashing commits
• This opens up the editor since

we chose to rebase
interactively.

• At the top, we can see the
commits involved in the
rebase.

• Below that, there are some
comments. The commands
that we can use are listed
here.

• For each commit we need to
specify which command to
use.

44

Squashing commits
• There are 2 commands

related to squashing: 
`squash` and `fixup`

• `squash` will squash the
commit keeping the commit
message.

• `fixup` will squash getting rid
of the commit message.

• Each command also has a
shorthand: s for `squash`, f
for `fixup`, etc.

45

Squashing commits

• Here we choose `fixup` for
the 2nd and 3rd commit.

• We will leave the 1st commit
as `pick` since we want to
keep its commit message.

• Note: we could also have
chosen `reword` for the 1st
commit if we wanted to
change the final commit
message.

46

Squashing commits
• Save and quit the editor.

• We can see that Git created
a new squashed commit that
contains the changes from
all 3 commits.

• The commit message is
same as the first commit
since we used `fixup` to
throw away the commit
messages of the other 2
commits.

47

Adding remote repos
• `git remote -v` lists the remote

repos you have added.

• `git remote add
<remote_name> <repo_url>`
adds a new remote.

• The convention is to use the
name “upstream” for the
original repo and “origin” for
your fork of that repo on
GitHub, GitLab, etc.

• `git remote remove
<remote_name>` removes a
remote.

48

Fetching from remote repos

• Simply adding a remote
doesn’t fetch any data from
the remote.

• `git fetch <remote_name>`
fetches commits and
branches from the remote.

• `git fetch —all` to fetch data
from all the remotes.

49

Syncing with remote repos
• After fetching, the new commits

and branches show up in our local
repo’s history. However all the local
branches remain where they were.

• We can move our local branch to
point to the same commit as the
remote branch with a fast forward
merge: 
`git merge —ff-only
<remote_name>/<branch_name>’

• We can do the same with a rebase: 
`git rebase <remote_name>/
<branch_name>’

• Alternatively `git pull` does both a
fetch and a merge in one go.

50

Pushing changes to remotes
• `git push` pushes the new

commits on the local branch to
the corresponding branch on
the remote.

• In order for `git push` to work
we need to configure a remote
branch: 
`git branch —set-upstream-
to=<remote_name>/
<branch_name`

• You can also configure the
remote while pushing: 
`git push —set-upstream
<remote_name>
<branch_name>`

51

Git hosting and
workflows

52

Git hosting services
• Git is NOT GitHub.

• GitHub, GitLab, BitBucket, etc. are websites that offers free
hosting for remote git repositories.

• GitHub Enterprise and GitLab are software that can be
hosted on your own servers. 
For example: IBM runs a GitHub Enterprise instance on
github.ibm.com for code internal to the company.

• GitLab is open source software. GitHub Enterprise is
licensed software.

53

http://github.ibm.com

What is GitHub?
• GitHub is the most popular of all the Git

hosting services.

• Launched on April 10, 2008.

• Acquired by Microsoft for $7.5 billion in
June of 2018.

• Largest user base (over 56 million
users). Some of the largest open
sources projects (like Linux) are on
GitHub.

• The fundamental software that
underpins GitHub is Git. 
The GitHub user interface was written
using Ruby on Rails and Erlang by
GitHub developers Wanstrath, Hyett,
and Preston-Werner.

54

What is GitHub?
• GitHub exposes (almost) all of the

functionality of Git through the
website. So we can do everything
we could do from the CLI, using
the UI.

• We can edit a file, create a new
file, delete files, etc. and make a
new commit with the changes.

• The entire commit history,
branches, tags, contributors, etc.
are listed on the website.

• GitHub offers both public and
private repositories.

55

GitHub forking
• Fork means to make a copy of a

repo.

• To fork, we simply go to the repo
we want to make a copy of and
click the “fork” button.

• The copy is stored as a new repo in
our account.

• Changes on the fork do not affect
the original repo we forked.

• This gives us an easy way to mess
around and make changes without
messing up the history of the
original repo.

56

Cloning a repo on GitHub

• `git clone <repo_url>`

• We can get the repo url by
clicking the “Clone or
download” button.

57

GitHub pull requests
• Pull request is a misnomer. Merge request is a better name. 

(GitLab calls it merge requests.)

• GitHub allows us to a make request to merge one branch in a repo with
another branch. We can also merge branches across forks.

• The request can be made on our own repos and on repos we don’t
own/control.

• The maintainers of the repo will review the changes you want to merge
and decide what to do. They might request that we make some
changes to the PR before it can be merged.

• A pull request (PR) can be used to merge a feature or bug fix that we
have implemented on our fork into the original repo.

58

GitHub PR based workflow

• Setup (we only need to do this one time): 
1. Fork the “upstream” repo. We will call our fork “origin”. 
 
2. Clone origin to your laptop/desktop and add upstream as a
remote.

59

GitHub PR based workflow

• Workflow: 
1. Create a branch on our local
repo. 
 
2. Make some commits. 
 
3. Push the commits to origin.

60

GitHub PR based workflow

• Workflow: 
4. Go to the upstream repo
and make a PR against the
master/main branch. 
 
5. The maintainers will review
the PR and request changes.

61

GitHub PR review
• Maintainers of a repo can review PRs

on that repo.

• They can add comments on each line.

• We can reply to these comments
individually and this often leads to
multiple independent threads of
conversation.

• Maintainers can finish the review with 3
different statuses: 
Approve, Comment or Request
Changes.

• Don’t panic if they request changes
since this is a VERY common thing to
do.

62

GitHub PR based workflow

• Workflow: 
6. Make the necessary changes
and push the commits to origin.
The PR will update
automatically. Now we can
request another review. 
 
7. Repeat step 6 until they
accept the PR. The PR then
gets merged. 
 
8. We can now delete the
feature branch from our local
repo and origin.

63

GitHub PR based workflow

• As an additional step we can sync
the main branch on our local repo
with upstream to get the changes we
just merged.

• Then we push the changes to the
main branch of origin.

• Now we are back where we started
and can start working on the next
PR.

• It is also possible to have multiple
PRs going at the same time.

64

Enterprise workflows Open source workflows

Workflows tend to depend on
company policy and team

leads.

Workflows depend on project
size and scope, number of
contributors, history/project
origins, code frequency, etc.

May have access to commit
directly to the main/master

branch.

Usually have no access to
commit directly to any branch.

Have to fork and clone.

There may be force pushes to
the upstream repo. Especially

if sensitive info was added
accidentally.

Almost never force push since
it requires a flag day, and
requires a large number of
users to sync the changes.

Changes might be made to
the repo with little to no public

discussion.

All changes need to be
discussed and agreed to in

public forums before they can
be merged.

65

Best practices
• Always fork and clone the repo to start contributing.

• Never commit directly to main/master branch. Always make a new
branch.

• Always link your pull request to an existing issue on the Github repo. If
there are no appropriate issues then create one.

• Each open source project will have their own set of standards
regarding commit messages, issue format, PR titles, PR review
process, license agreements, etc. 
 
Read the `CONTRIBUTING.md` file if it exists. Every large open source
project will have one next to the `README.md`, with the details on how
to contribute.

66

GitHub CLI
• `gh` is a tool for interacting with

GitHub from the command line:
https://github.com/cli/cli

• Available for MacOS, Linux and
Windows.

• `gh pr checkout <pr_number>` is an
easy way to checkout a PR for
review and testing locally.

• The gh tool exposes all of the
GitHub specific functionality such
as, making comments on issues and
PRs, creating new issues and PRs,
submitting PR reviews, and a lot
more.

67

https://github.com/cli/cli

Demo

68

Resources
• Videos: 

- Dives into git internals to give a better understanding. 
 Lecture 6: Version Control (git) (2020) 
 
- Only 7 minutes and straight to the point. Perhaps a bit overwhelming. 
 Git Internals - Git Objects 
 
- Long but goes into much more depth, including a look at the actual files and folders inside. 
 Deep Dive into Git - Edward Thomson

• Books: 
- The official git book. https://git-scm.com/book/en/v2

• Interactive guide for fixing mistakes: 
- https://sukima.github.io/GitFixUm/

• Useful info: 
- How to write meaningful commit messages: https://www.conventionalcommits.org/en/v1.0.0/ 
- Workflow: https://github.com/konveyor/move2kube/blob/main/git-workflow.md

• Slides: 
https://github.ibm.com/Harikrishnan-Balagopal/git-exercises/blob/master/presentation.pdf

69

https://youtu.be/2sjqTHE0zok
https://youtu.be/MyvyqdQ3OjI
https://youtu.be/fBP18-taaNw
https://git-scm.com/book/en/v2
https://sukima.github.io/GitFixUm/
https://www.conventionalcommits.org/en/v1.0.0/
https://github.com/konveyor/move2kube/blob/main/git-workflow.md
https://github.ibm.com/Harikrishnan-Balagopal/git-exercises/blob/master/presentation.pdf

There will a session in April on

Best Practices for Open

Source Projects

70

Thank You! 😃

71

