
Automated Detection of Software Bugs

Harikrishnan Balagopal

March 14, 2018

Harikrishnan Balagopal Automated Detection of Software Bugs

Contents

Introduction
Program Analysis
Motivation
Types of Analysis
Static Analysis
Dynamic Analysis

Symbolic Execution
What is
Standard Execution Example
Symbolic Execution Example
Solving Constraints
SMT Solver
Concolic Execution

Challenges

Tools

Applications

Ongoing Research

Conclusion

Harikrishnan Balagopal Automated Detection of Software Bugs

Introduction

What is Program Analysis?

Program analysis is the process of automatically analyzing the
behavior of computer programs regarding a property such as
correctness, robustness, safety and liveness.

Focuses on two major areas: program optimization and
program correctness.

Can be performed without executing the program (Static
program analysis)

Or during runtime (Dynamic program analysis)

Or in a combination of both.

Harikrishnan Balagopal Automated Detection of Software Bugs

Introduction

What is Program Analysis?

Program analysis is the process of automatically analyzing the
behavior of computer programs regarding a property such as
correctness, robustness, safety and liveness.

Focuses on two major areas: program optimization and
program correctness.

Can be performed without executing the program (Static
program analysis)

Or during runtime (Dynamic program analysis)

Or in a combination of both.

Harikrishnan Balagopal Automated Detection of Software Bugs

Introduction

What is Program Analysis?

Program analysis is the process of automatically analyzing the
behavior of computer programs regarding a property such as
correctness, robustness, safety and liveness.

Focuses on two major areas: program optimization and
program correctness.

Can be performed without executing the program (Static
program analysis)

Or during runtime (Dynamic program analysis)

Or in a combination of both.

Harikrishnan Balagopal Automated Detection of Software Bugs

Introduction

What is Program Analysis?

Program analysis is the process of automatically analyzing the
behavior of computer programs regarding a property such as
correctness, robustness, safety and liveness.

Focuses on two major areas: program optimization and
program correctness.

Can be performed without executing the program (Static
program analysis)

Or during runtime (Dynamic program analysis)

Or in a combination of both.

Harikrishnan Balagopal Automated Detection of Software Bugs

Introduction

What is Program Analysis?

Program analysis is the process of automatically analyzing the
behavior of computer programs regarding a property such as
correctness, robustness, safety and liveness.

Focuses on two major areas: program optimization and
program correctness.

Can be performed without executing the program (Static
program analysis)

Or during runtime (Dynamic program analysis)

Or in a combination of both.

Harikrishnan Balagopal Automated Detection of Software Bugs

Problems with Manual Testing

i n t f (i n t x)
{

i n t y = x ∗ 2 ;
i f (y == 12) f a i l () ; // Crash
e l s e r e t u r n y ; // OK

}

Checking 1 input tells us nothing about behaviour for other
inputs. Thus we need to check all possible inputs.

The number of possible inputs is astronomically large.
Infeasible to check every single one.

Testing every input is a waste of time and computational
power since large sets of inputs will follow the same path
through the program.

Test code could have bugs in it since its written by a human.
Additional time and energy spent debugging test code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Problems with Manual Testing

i n t f (i n t x)
{

i n t y = x ∗ 2 ;
i f (y == 12) f a i l () ; // Crash
e l s e r e t u r n y ; // OK

}

Checking 1 input tells us nothing about behaviour for other
inputs. Thus we need to check all possible inputs.

The number of possible inputs is astronomically large.
Infeasible to check every single one.

Testing every input is a waste of time and computational
power since large sets of inputs will follow the same path
through the program.

Test code could have bugs in it since its written by a human.
Additional time and energy spent debugging test code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Problems with Manual Testing

i n t f (i n t x)
{

i n t y = x ∗ 2 ;
i f (y == 12) f a i l () ; // Crash
e l s e r e t u r n y ; // OK

}

Checking 1 input tells us nothing about behaviour for other
inputs. Thus we need to check all possible inputs.

The number of possible inputs is astronomically large.
Infeasible to check every single one.

Testing every input is a waste of time and computational
power since large sets of inputs will follow the same path
through the program.

Test code could have bugs in it since its written by a human.
Additional time and energy spent debugging test code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Problems with Manual Testing

i n t f (i n t x)
{

i n t y = x ∗ 2 ;
i f (y == 12) f a i l () ; // Crash
e l s e r e t u r n y ; // OK

}

Checking 1 input tells us nothing about behaviour for other
inputs. Thus we need to check all possible inputs.

The number of possible inputs is astronomically large.
Infeasible to check every single one.

Testing every input is a waste of time and computational
power since large sets of inputs will follow the same path
through the program.

Test code could have bugs in it since its written by a human.
Additional time and energy spent debugging test code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Problems with Manual Testing

i n t f (i n t x)
{

i n t y = x ∗ 2 ;
i f (y == 12) f a i l () ; // Crash
e l s e r e t u r n y ; // OK

}

Checking 1 input tells us nothing about behaviour for other
inputs. Thus we need to check all possible inputs.

The number of possible inputs is astronomically large.
Infeasible to check every single one.

Testing every input is a waste of time and computational
power since large sets of inputs will follow the same path
through the program.

Test code could have bugs in it since its written by a human.
Additional time and energy spent debugging test code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Real world example: MINIX’s tr tool

tr(short for translate) is a UNIX
tool that converts certain
characters in a stream into other
characters.

KLEE is a program analysis tool
that uses symbolic execution.

When KLEE runs on tr, it finds a
buffer overflow error at line 18 in
just a few seconds and then
produces a concrete input ([””
””) that hits the bug.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Motivation

Why do Program Analysis?

Manual testing of programs is a very time consuming and
labor intensive process. It is also prone to human error.

Automated detection of bugs is preferable as it is easier,
faster, covers more of your code, and avoids bugs in the
code doing the testing.

Finds bugs that can compromise security or cause other
undesirable behavior.

To prove your program does not contain certain types of bugs
(invalid memory access, divide by zero, null pointer
dereference, array index out of bounds, buffer overflow).

Compiler optimizations such as dead code elimination,
constant propagation, common subexpression elimination etc
rely on analysis such as control flow analysis, data flow
analysis, etc.

Harikrishnan Balagopal Automated Detection of Software Bugs

Types of Program Analysis

Static Analysis

Control Flow Analysis
Data Flow Analysis
Model Checking
Abstract Interpretation(Symbolic Execution)
Type Systems

Dynamic Analysis

Testing
Monitoring
Program Slicing

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Program Analysis

Static program analysis is the analysis of computer software that is
performed without actually executing programs.

Extract information about the behavior of programs by
systematic inspection of program text.

Can be performed on some version of the source code or some
form of the object code.

Usually performed by an automated tool

When done by a human it is called program understanding,
program comprehension, or code review.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Program Analysis

Static program analysis is the analysis of computer software that is
performed without actually executing programs.

Extract information about the behavior of programs by
systematic inspection of program text.

Can be performed on some version of the source code or some
form of the object code.

Usually performed by an automated tool

When done by a human it is called program understanding,
program comprehension, or code review.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Program Analysis

Static program analysis is the analysis of computer software that is
performed without actually executing programs.

Extract information about the behavior of programs by
systematic inspection of program text.

Can be performed on some version of the source code or some
form of the object code.

Usually performed by an automated tool

When done by a human it is called program understanding,
program comprehension, or code review.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Program Analysis

Static program analysis is the analysis of computer software that is
performed without actually executing programs.

Extract information about the behavior of programs by
systematic inspection of program text.

Can be performed on some version of the source code or some
form of the object code.

Usually performed by an automated tool

When done by a human it is called program understanding,
program comprehension, or code review.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Program Analysis

Static program analysis is the analysis of computer software that is
performed without actually executing programs.

Extract information about the behavior of programs by
systematic inspection of program text.

Can be performed on some version of the source code or some
form of the object code.

Usually performed by an automated tool

When done by a human it is called program understanding,
program comprehension, or code review.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Analysis Diagram

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Analysis Advantages and Disadvantages

Advantages:

No need to build and execute the program.

Can detect bugs early in development cycle.

Cost efficient to correct bugs early.

Can detect the exact location of bugs in the source code.

Since it works on source code, it can detect bugs such as
unreachable code, boundary value violations, out of bounds
memory access etc.

Disadvantages:

Time consuming if done manually.

Automated tools produce false positives and false negatives.

Does not find vulnerabilities introduced in the runtime
environment.

Harikrishnan Balagopal Automated Detection of Software Bugs

Static Analysis Advantages and Disadvantages

Advantages:

No need to build and execute the program.

Can detect bugs early in development cycle.

Cost efficient to correct bugs early.

Can detect the exact location of bugs in the source code.

Since it works on source code, it can detect bugs such as
unreachable code, boundary value violations, out of bounds
memory access etc.

Disadvantages:

Time consuming if done manually.

Automated tools produce false positives and false negatives.

Does not find vulnerabilities introduced in the runtime
environment.

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis

Dynamic program analysis is the analysis of computer software that
is performed by executing programs on a real or virtual processor.

Analysis is done on the compiled binary.

The program is executed within a controlled environment and
test inputs are used.

Instrumentation of the program binary is done to detect
memory leaks, unsafe use of user input, monitor performance,
etc.

Capable of exposing a subtle flaw or vulnerability too
complicated for static analysis alone to reveal(race conditions,
environment specific bugs).

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis

Dynamic program analysis is the analysis of computer software that
is performed by executing programs on a real or virtual processor.

Analysis is done on the compiled binary.

The program is executed within a controlled environment and
test inputs are used.

Instrumentation of the program binary is done to detect
memory leaks, unsafe use of user input, monitor performance,
etc.

Capable of exposing a subtle flaw or vulnerability too
complicated for static analysis alone to reveal(race conditions,
environment specific bugs).

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis

Dynamic program analysis is the analysis of computer software that
is performed by executing programs on a real or virtual processor.

Analysis is done on the compiled binary.

The program is executed within a controlled environment and
test inputs are used.

Instrumentation of the program binary is done to detect
memory leaks, unsafe use of user input, monitor performance,
etc.

Capable of exposing a subtle flaw or vulnerability too
complicated for static analysis alone to reveal(race conditions,
environment specific bugs).

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis

Dynamic program analysis is the analysis of computer software that
is performed by executing programs on a real or virtual processor.

Analysis is done on the compiled binary.

The program is executed within a controlled environment and
test inputs are used.

Instrumentation of the program binary is done to detect
memory leaks, unsafe use of user input, monitor performance,
etc.

Capable of exposing a subtle flaw or vulnerability too
complicated for static analysis alone to reveal(race conditions,
environment specific bugs).

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis

Dynamic program analysis is the analysis of computer software that
is performed by executing programs on a real or virtual processor.

Analysis is done on the compiled binary.

The program is executed within a controlled environment and
test inputs are used.

Instrumentation of the program binary is done to detect
memory leaks, unsafe use of user input, monitor performance,
etc.

Capable of exposing a subtle flaw or vulnerability too
complicated for static analysis alone to reveal(race conditions,
environment specific bugs).

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis Advantages and Disadvantages

Advantages:

Can find bugs that are specific to the runtime environment.

Allows for analysis of applications without access to the
source code.

Can detect subtle bugs such as race conditions, memory leaks,
etc that are hard to detect using static analysis.

Disadvantages:

Need to build and run the program in order to do analysis.

Cannot guarantee the full test coverage of the source code.

It is more difficult to trace the vulnerability back to the exact
location in the code, taking longer to fix the problem.

Harikrishnan Balagopal Automated Detection of Software Bugs

Dynamic Analysis Advantages and Disadvantages

Advantages:

Can find bugs that are specific to the runtime environment.

Allows for analysis of applications without access to the
source code.

Can detect subtle bugs such as race conditions, memory leaks,
etc that are hard to detect using static analysis.

Disadvantages:

Need to build and run the program in order to do analysis.

Cannot guarantee the full test coverage of the source code.

It is more difficult to trace the vulnerability back to the exact
location in the code, taking longer to fix the problem.

Harikrishnan Balagopal Automated Detection of Software Bugs

Symbolic Execution

Definition: ”Symbolic execution (also symbolic evaluation) is a
means of analyzing a program to determine what inputs cause each
part of a program to execute.

An interpreter follows the program, assuming symbolic values for
inputs rather than obtaining actual inputs as normal execution of
the program would. It thus arrives at expressions in terms of those
symbols for expressions and variables in the program, and
constraints in terms of those symbols for the possible outcomes of
each conditional branch.”

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)

During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)

We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.

(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)

(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)

These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

What is Symbolic Execution?

The workhorse of modern Program Analysis. It is a part of a Static
Analysis technique called Abstract Interpretation.

During normal execution of a program, variables have concrete
values. (eg:- int x, y; // becomes x = 4, y = 3)
During symbolic execution of a program, variables have symbolic
values. (eg:- int x, y; // assume x = X, y = Y)
We proceed line by line through the code and add new constraints
to these variables.
(eg:- y = 2 * x; // x = X, y = 2X)
(eg:- if(y > 4)x = y; else x = 4 * y;

x =

{
2X , 2X > 4

8X , 2X ≤ 4
, y = 2X

)
These constraints allow us to consider ALL possible values those
variables can take at the same time.

Harikrishnan Balagopal Automated Detection of Software Bugs

Standard execution

i n t max(i n t x , i n t y)
{

i n t t = 0 ;
i f (x > y)
{

t = x ;
}
e l s e
{

t = y ;
}
r e t u r n t ;

}

Harikrishnan Balagopal Automated Detection of Software Bugs

Standard execution

i n t max(i n t x , i n t y)
{

i n t t = 0 ;
i f (x > y)
{

t = x ;
}
e l s e
{

t = y ;
}
r e t u r n t ;

}

i n t max(i n t x = 2 , i n t y = 4)
{

i n t t = 0 ;
i f (2 > 4) // f a l s e
{

t = x ;
}
e l s e
{

t = 4 ;
}
r e t u r n 4 ;

}

Harikrishnan Balagopal Automated Detection of Software Bugs

Standard execution

i n t max(i n t x , i n t y)
{

i n t t = 0 ;
i f (x > y)
{

t = x ;
}
e l s e
{

t = y ;
}
r e t u r n t ;

}

i n t max(i n t x = 4 , i n t y = 2)
{

i n t t = 0 ;
i f (4 > 2) // t r u e
{

t = 4 ;
}
e l s e
{

t = 2 ;
}
r e t u r n 4 ;

}

Harikrishnan Balagopal Automated Detection of Software Bugs

Symbolic execution

i n t max(i n t x , i n t y)
{

i n t t = 0 ;
i f (x > y)
{

t = x ;
}
e l s e
{

t = y ;
}
r e t u r n t ;

}

i n t max(i n t x = X, i n t y = Y)
{

i n t t = 0 ;
i f (X > Y)
{

t = X;
}
e l s e
{

t = Y;
}
// now t = T
r e t u r n T;

}

T =

{
X , X > Y

Y , X ≤ Y

Harikrishnan Balagopal Automated Detection of Software Bugs

Constraints

Constraints generated from symbolic execution
X > Y =⇒ T = X
X ≤ Y =⇒ T = Y

After symbolic execution finishes, add an additional constraint
”T < X ∨ T < Y ∨ (T 6= X ∧ T 6= Y)” to check correctness
of the function max. This constraint represents a failure state.

(X > Y =⇒ T = X)∧
(X ≤ Y =⇒ T = Y)∧

(T < X ∨ T < Y ∨ (T 6= X ∧ T 6= Y))

If all these constraints can be satisfied at the same time then
there is a bug. The solution to the constraints is a concrete
input that reproduces the bug.

In this example there is no solution to this set of constraints.
Therefore the function is correct.

Harikrishnan Balagopal Automated Detection of Software Bugs

Branching Statements

”if” conditions are not the only points where execution can branch.
Execution also branches when executing any code that could fail
such as:

Harikrishnan Balagopal Automated Detection of Software Bugs

Solving Constraints

Harikrishnan Balagopal Automated Detection of Software Bugs

What is SMT?

Satisfiability Modulo Theories

Boolean SAT + Theories

Common Theories

Bit Vectors (Fixed Length)

Theory of Arrays

Integer Arithmetic (Linear)

Uninterpreted functions

Harikrishnan Balagopal Automated Detection of Software Bugs

SMT Working

Constraints: (X > 5) ∧ (Y < 5) ∧ ((Y > X) ∨ (Y > 2))

Simplify: F1 ∧ F2 ∧ (F3 ∨ F4)
∧ (¬(F1 ∧ F2 ∧ F3))

Give this pure boolean expression to the Boolean SAT solver.
Query 1:

F1 ∧ F2 ∧ F3 : X > 5,Y < 5,Y > X
Answer:

Unsatisfiable: ¬(F1 ∧ F2 ∧ F3)
Query 2:

F1 and F2 and F4: X > 5,Y < 5,Y > 2
Answer:

Satisfiable: X = 6, Y = 3

Harikrishnan Balagopal Automated Detection of Software Bugs

SMT Working

Constraints: (X > 5) ∧ (Y < 5) ∧ ((Y > X) ∨ (Y > 2))
Simplify: F1 ∧ F2 ∧ (F3 ∨ F4)

∧ (¬(F1 ∧ F2 ∧ F3))

Give this pure boolean expression to the Boolean SAT solver.

Query 1:
F1 ∧ F2 ∧ F3 : X > 5,Y < 5,Y > X

Answer:
Unsatisfiable: ¬(F1 ∧ F2 ∧ F3)

Query 2:
F1 and F2 and F4: X > 5,Y < 5,Y > 2

Answer:
Satisfiable: X = 6, Y = 3

Harikrishnan Balagopal Automated Detection of Software Bugs

SMT Working

Constraints: (X > 5) ∧ (Y < 5) ∧ ((Y > X) ∨ (Y > 2))
Simplify: F1 ∧ F2 ∧ (F3 ∨ F4)

∧ (¬(F1 ∧ F2 ∧ F3))

Give this pure boolean expression to the Boolean SAT solver.
Query 1:

F1 ∧ F2 ∧ F3 : X > 5,Y < 5,Y > X
Answer:

Unsatisfiable: ¬(F1 ∧ F2 ∧ F3)

Query 2:
F1 and F2 and F4: X > 5,Y < 5,Y > 2

Answer:
Satisfiable: X = 6, Y = 3

Harikrishnan Balagopal Automated Detection of Software Bugs

SMT Working

Constraints: (X > 5) ∧ (Y < 5) ∧ ((Y > X) ∨ (Y > 2))
Simplify: F1 ∧ F2 ∧ (F3 ∨ F4)
∧ (¬(F1 ∧ F2 ∧ F3))

Give this pure boolean expression to the Boolean SAT solver.
Query 1:

F1 ∧ F2 ∧ F3 : X > 5,Y < 5,Y > X
Answer:

Unsatisfiable: ¬(F1 ∧ F2 ∧ F3)
Query 2:

F1 and F2 and F4: X > 5,Y < 5,Y > 2
Answer:

Satisfiable: X = 6, Y = 3

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution

Also called Dynamic Symbolic Execution, combines concrete values
with symbolic values to reduce the complexity of generated
constraints in exchange for reduced code coverage.

Start with concrete input (could be random values).

Execute the program normally but instrument the binary to
keep track of the symbolic state on the side (shadow state).

This shadow state keeps track of the constraints that must be
satisfied to execute this path. These set of constraints are
called the path condition.

After execution is finished explore new paths by negating
randomly chosen constraints in the path condition and solving
for this new set of constraints to get a concrete input.

This technique reduces the complexity of constraints that are
generated since we are not exploring every path at once.

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Concolic Execution Example

Harikrishnan Balagopal Automated Detection of Software Bugs

Challenges to Symbolic and Concolic Execution

State space explosion - Number of paths to be executed(and
corresponding states) grows exponentially with the number of
branches (if statements). Loops also explode the state space.

Memory Model - Any arbitrarily complex object can be
regarded as an array of bytes and each byte associated with a
distinct symbol. However, when possible, exploiting structural
properties of the data may be more convenient.

Environment - Real-world applications constantly interact with
the environment (e.g., the file system or the network) through
libraries and system calls. These interactions may cause
side-effects (such as the creation of a file) that could later
affect the execution and must be therefore taken into account.

Harikrishnan Balagopal Automated Detection of Software Bugs

Tools

KLEE LLVM Execution Engine
KLEE is an open source symbolic virtual machine built on

top of the LLVM compiler infrastructure.

Generates tests that achieve high coverage on a diverse set of
complex and environmentally-intensive programs.

KLEE was used to thoroughly check all 89 stand-alone
programs in the GNU COREUTILS utility suite.

Generated tests achieved high line coverage — on average
over 90% per tool (median: over 94%) — and beat the
coverage of the developers’ own hand-written test suites by
16.8%!

It found ten fatal errors in COREUTILS (including three that
had escaped detection for 15 years), which account for more
crashing bugs than were reported in 2006, 2007 and 2008
combined.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE Architecture

At a high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter.

Each symbolic process has a register file, stack, heap, program
counter, and path condition.

KLEE’s representation of a symbolic process is called a state.

At any one time, KLEE may be executing a large number of
states. The core of KLEE is an interpreter loop which selects
a state to run and then symbolically executes a single
instruction in the context of that state.

This loop continues until there are no states remaining, or a
user-defined timeout is reached.

Unlike a normal process, storage locations for a state —
registers, stack and heap objects — refer to expressions
(trees) instead of raw data values.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE’s approach to challenges

State Explosion - By implementing the heap as an immutable
map, portions of the heap can be shared amongst multiple
states. Since KLEE tracks all memory objects, it can
implement copy-on-write at the object level (rather than page
granularity), dramatically reducing per-state memory
requirements.

Environment Modeling - The environment is handled by
redirecting library calls that access it to models that
understand the semantics of the desired action well enough to
generate the required constraints. Crucially, these models are
written in normal C code which the user can readily
customize, extend, or even replace without having to
understand the internals of KLEE. KLEE has about 2,500
lines of code to define simple models for roughly 40 system
calls (e.g., open, read, write, stat, lseek, ftruncate, ioctl, etc).

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE’s approach to challenges

State Explosion - By implementing the heap as an immutable
map, portions of the heap can be shared amongst multiple
states. Since KLEE tracks all memory objects, it can
implement copy-on-write at the object level (rather than page
granularity), dramatically reducing per-state memory
requirements.

Environment Modeling - The environment is handled by
redirecting library calls that access it to models that
understand the semantics of the desired action well enough to
generate the required constraints. Crucially, these models are
written in normal C code which the user can readily
customize, extend, or even replace without having to
understand the internals of KLEE. KLEE has about 2,500
lines of code to define simple models for roughly 40 system
calls (e.g., open, read, write, stat, lseek, ftruncate, ioctl, etc).

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE’s approach to challenges

Query Optimization - Almost always, the cost of constraint
solving dominates everything else — unsurprising, given that
KLEE generates complicated queries for an NP-complete logic.
A lot of effort is spend on tricks to simplify expressions:

Expression Rewriting
Constraint Set Simplification
Implied Value Concretization
These simplify and ideally eliminate queries before they reach
the SMT. Simplified queries make solving faster, reduce
memory consumption, and increase the query cache’s hit rate.

Harikrishnan Balagopal Automated Detection of Software Bugs

KLEE’s approach to challenges

State scheduling - KLEE selects the state to run at each
instruction by interleaving the following two search heuristics:

Random Path Selection maintains a binary tree recording the
program path followed for all active states. States are selected
by traversing this tree from the root and randomly selecting
the path to follow at branch points. Therefore, when a branch
point is reached, the set of states in each subtree has equal
probability of being selected, regardless of the size of their
subtrees.
Coverage-Optimized Search tries to select states likely to cover
new code in the immediate future. It uses heuristics to
compute a weight for each state and then randomly selects a
state according to these weights. Currently these heuristics
take into account the minimum distance to an uncovered
instruction, the call stack of the state, and whether the state
recently covered new code.

Harikrishnan Balagopal Automated Detection of Software Bugs

Tools

Other open source tools:

angr (Python framework supporting x86, x86-64, ARM,
AARCH64, MIPS, MIPS64, PPC, and PPC64)

FuzzBALL for VineIL / Native

JPF, jCUTE, janala2, JBSE and KeY for Java

Otter for C

SymDroid for Dalvik bytecode

Kite for LLVM bytecode

SymJS and Jalangi2 for Javascript

Rubyx for Ruby

Pex for .NET Framework

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

In 2016, DARPA challenged the global innovation community with
a $2M prize to build a computer that can hack & patch unknown
software with no one at the keyboard. It was the world’s first all
machine hacking tournament.

7 teams were selected to participate in the final event. Each
team received $750,000 to build a high performance rig.

These rigs would run custom programs written by the contest
organizers designed to emulate real software such as email
servers, web servers, database applications, etc.

Some of these programs contained bugs that could be
exploited to leak memory, execute shell code, etc. The idea is
to use these exploits to capture the opponents’ flag.

Fuzzing and Symbolic Execution were the fundamental
techniques used to analyze, hack and patch the software.

Exploits and patches were generated and deployed completely
automatically.

Harikrishnan Balagopal Automated Detection of Software Bugs

DARPA Cyber Grand Challenge at DEFCON 24

The CGC Final Event (CFE) was held on August 4, 2016 and
lasted for 11 hours.

The winning systems of the Cyber Grand Challenge (CGC)
Final Event were:

”Mayhem” - developed by David Brumley, ForAllSecure,
Carnegie Mellon University of Pittsburgh, Pa. - $2 million
”Xandra” - developed by TECHx, GrammaTech Inc., Ithaca,
N.Y., and Charlottesville, Va. - $1 million
”Mechanical Phish” - developed by Shellphish, UC Santa
Barbara, Ca. - $750,000

The winner was also awarded the opportunity to play against
humans in the 24th DEF CON capture the flag competition.

Full event live stream: https://youtu.be/n0kn4mDXY6I

Harikrishnan Balagopal Automated Detection of Software Bugs

https://youtu.be/n0kn4mDXY6I

Applications

Symbolic Execution is one of those techniques that has broken out
of the research bubble and made it into a lot of high impact
applications.

Microsoft Sage
It is a whitebox fuzzer optimized for long symbolic executions
at the x86 binary level.
Running continuously since 2008 at the largest fuzzing lab in
the world on MS apps such as Word, Office, Powerpoint, etc.
Has found 100s of bugs in 100s of apps which were missed by
other program analyses and blackbox testing techniques. For
instance, revealed nearly one third of the bugs discovered
during the development of Windows 7.
Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs.

KLEE (Has found severe bugs in open source software).

S2E - Virtual machine augmented with symbolic execution
and modular path analyzers. It runs unmodified x86, x86-64,
or ARM software stacks, including programs, libraries, the
kernel, and drivers.

Harikrishnan Balagopal Automated Detection of Software Bugs

Applications

Symbolic Execution is one of those techniques that has broken out
of the research bubble and made it into a lot of high impact
applications.

Microsoft Sage
It is a whitebox fuzzer optimized for long symbolic executions
at the x86 binary level.
Running continuously since 2008 at the largest fuzzing lab in
the world on MS apps such as Word, Office, Powerpoint, etc.
Has found 100s of bugs in 100s of apps which were missed by
other program analyses and blackbox testing techniques. For
instance, revealed nearly one third of the bugs discovered
during the development of Windows 7.
Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs.

KLEE (Has found severe bugs in open source software).

S2E - Virtual machine augmented with symbolic execution
and modular path analyzers. It runs unmodified x86, x86-64,
or ARM software stacks, including programs, libraries, the
kernel, and drivers.

Harikrishnan Balagopal Automated Detection of Software Bugs

Applications

Symbolic Execution is one of those techniques that has broken out
of the research bubble and made it into a lot of high impact
applications.

Microsoft Sage
It is a whitebox fuzzer optimized for long symbolic executions
at the x86 binary level.
Running continuously since 2008 at the largest fuzzing lab in
the world on MS apps such as Word, Office, Powerpoint, etc.
Has found 100s of bugs in 100s of apps which were missed by
other program analyses and blackbox testing techniques. For
instance, revealed nearly one third of the bugs discovered
during the development of Windows 7.
Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs.

KLEE (Has found severe bugs in open source software).

S2E - Virtual machine augmented with symbolic execution
and modular path analyzers. It runs unmodified x86, x86-64,
or ARM software stacks, including programs, libraries, the
kernel, and drivers.

Harikrishnan Balagopal Automated Detection of Software Bugs

Applications

Symbolic Execution is one of those techniques that has broken out
of the research bubble and made it into a lot of high impact
applications.

Microsoft Sage
It is a whitebox fuzzer optimized for long symbolic executions
at the x86 binary level.
Running continuously since 2008 at the largest fuzzing lab in
the world on MS apps such as Word, Office, Powerpoint, etc.
Has found 100s of bugs in 100s of apps which were missed by
other program analyses and blackbox testing techniques. For
instance, revealed nearly one third of the bugs discovered
during the development of Windows 7.
Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs.

KLEE (Has found severe bugs in open source software).

S2E - Virtual machine augmented with symbolic execution
and modular path analyzers. It runs unmodified x86, x86-64,
or ARM software stacks, including programs, libraries, the
kernel, and drivers.

Harikrishnan Balagopal Automated Detection of Software Bugs

What I plan to do

Replace the heuristics used for path selection in concolic
execution with a machine learning algorithm.

Augment the constraint solvers used with a machine learning
based solver specifically aimed at solving non linear
constraints.

Harikrishnan Balagopal Automated Detection of Software Bugs

Literature Survey

Randomized Coordinate Shrinking(RaCoS) algorithm from
”Derivative-Free Optimization via Classification” research paper.
Has been used to solve non linear constraints in concolic execution
in another research paper(”Symbolic Execution of Complex
Program Driven by Machine Learning Based Constraint Solving”).

It is a machine learning based optimization algorithm.

Can minimize non linear functions that are not differentiable,
hence ”derivative free optimization”.

Efficient for certain classes of functions(Polynomial time
convergence). Has a strong theoretical foundation.

Simple algorithm which is easy to implement and analyze.

Harikrishnan Balagopal Automated Detection of Software Bugs

Fuzzing

Fuzzing or fuzz testing is an automated software testing technique
that involves providing invalid, unexpected, or random data as
inputs to a computer program.

The program is then monitored for exceptions such as crashes,
or failing built-in code assertions or for finding potential
memory leaks.

Typically, fuzzers are used to test programs that take
structured inputs.

This structure is specified, e.g., in a file format or protocol
and distinguishes valid from invalid input.

An effective fuzzer generates semi-valid inputs that are ”valid
enough” in that they are not directly rejected by the parser,
but do create unexpected behaviors deeper in the program
and are ”invalid enough” to expose corner cases that have not
been properly dealt with.

Harikrishnan Balagopal Automated Detection of Software Bugs

Fuzzing Example

i n t main (v o i d)
{

char name [1 0 0] ;

p r i n t f (” Ente r your name : ”) ;
s c a n f (”%s ” , name) ;
p r i n t f (” He l l o %s ! ! ” , name) ;

r e t u r n 0 ;
}

This program reads a string as user input and displays it back
to the user.

If we enter a string less than 100 characters(Ex: ”World”) we
will get the desired output(”Hello World!!”).

However since the user input is read into a fixed length 100
byte buffer using scanf(which does no bounds checking), it is
easy to overflow the buffer and rewrite the stack memory.

Harikrishnan Balagopal Automated Detection of Software Bugs

Fuzzing Example

i n t main (v o i d)
{

char name [1 0 0] ;

p r i n t f (” Ente r your name : ”) ;
s c a n f (”%s ” , name) ;
p r i n t f (” He l l o %s ! ! ” , name) ;

r e t u r n 0 ;
}

A fuzzer when given a valid input (like ”World”) will generate
1000s of new inputs that are variations of the input.
Ex: ”$Worl#d‘”, ”W01234RLD”,
”WWWWWWWWWWWWWWWWWWWWWWORLD”,
etc

Eventually it will generate an input that is longer than 100
bytes and overflow the buffer and crash the program. It will
then report this as a bug and provide the crashing input.

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Combining Symbolic Execution and Fuzzing

Driller is a hybrid vulnerability excavation tool which leverages
fuzzing and selective concolic execution in a complementary
manner, to find deeper bugs in programs.

There are two different categories of user input:

General input, which has a wide range of valid values (e.g., the
name of a user) and
Specific input, which has a limited set of valid values (e.g., the
hash of the aforementioned name).

Checks for particular values of specific input effectively split
an application into compartments, separated by such checks.

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Combining Symbolic Execution and Fuzzing

Driller is a hybrid vulnerability excavation tool which leverages
fuzzing and selective concolic execution in a complementary
manner, to find deeper bugs in programs.

Fuzzing is efficient when exploring possible values of general
input, inside a compartment, but struggles to identify the
precise values needed to satisfy checks on specific input and
drive execution flow between compartments.

On the other hand, Concolic Execution is efficient at
determining the values that such specific checks require, but
the path explosion problem makes it inefficient for pushing
execution inside a compartment.

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Example of combining the 2 approaches

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Results on Cyber Grande Challenge Binaries

Experiments were done on a cluster of modern AMD64 processors.
Each binary had four dedicated fuzzer nodes and 64 concolic
execution nodes, shared among all binaries.
Each concolic execution job had max 4GB RAM. Analyzed each
binary until either a crash was found or 24 hours had passed.

The symbolic execution baseline experiment faired poorly on
this dataset. Out of the 126 applications, symbolic execution
discovered vulnerabilities in only 16.

Fuzzing proved to be sufficient to discover crashes in 68.

In Driller’s run, Driller’s concolic execution was able to
generate a total of 101 new inputs for 13 of these
applications. Using these extra inputs, AFL was able to
discover an additional 9 crashes, for a total of 77, meaning
that Driller achieves a 12% improvement over baseline fuzzing
in relation to discovered vulnerabilities.

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Results on Cyber Grande Challenge Binaries

Experiments were done on a cluster of modern AMD64 processors.
Each binary had four dedicated fuzzer nodes and 64 concolic
execution nodes, shared among all binaries.
Each concolic execution job had max 4GB RAM. Analyzed each
binary until either a crash was found or 24 hours had passed.

The symbolic execution baseline experiment faired poorly on
this dataset. Out of the 126 applications, symbolic execution
discovered vulnerabilities in only 16.

Fuzzing proved to be sufficient to discover crashes in 68.

In Driller’s run, Driller’s concolic execution was able to
generate a total of 101 new inputs for 13 of these
applications. Using these extra inputs, AFL was able to
discover an additional 9 crashes, for a total of 77, meaning
that Driller achieves a 12% improvement over baseline fuzzing
in relation to discovered vulnerabilities.

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Results on Cyber Grande Challenge Binaries

Experiments were done on a cluster of modern AMD64 processors.
Each binary had four dedicated fuzzer nodes and 64 concolic
execution nodes, shared among all binaries.
Each concolic execution job had max 4GB RAM. Analyzed each
binary until either a crash was found or 24 hours had passed.

The symbolic execution baseline experiment faired poorly on
this dataset. Out of the 126 applications, symbolic execution
discovered vulnerabilities in only 16.

Fuzzing proved to be sufficient to discover crashes in 68.

In Driller’s run, Driller’s concolic execution was able to
generate a total of 101 new inputs for 13 of these
applications. Using these extra inputs, AFL was able to
discover an additional 9 crashes, for a total of 77, meaning
that Driller achieves a 12% improvement over baseline fuzzing
in relation to discovered vulnerabilities.

Harikrishnan Balagopal Automated Detection of Software Bugs

Driller: Results on Cyber Grande Challenge Binaries

Experiments were done on a cluster of modern AMD64 processors.
Each binary had four dedicated fuzzer nodes and 64 concolic
execution nodes, shared among all binaries.
Each concolic execution job had max 4GB RAM. Analyzed each
binary until either a crash was found or 24 hours had passed.

The symbolic execution baseline experiment faired poorly on
this dataset. Out of the 126 applications, symbolic execution
discovered vulnerabilities in only 16.

Fuzzing proved to be sufficient to discover crashes in 68.

In Driller’s run, Driller’s concolic execution was able to
generate a total of 101 new inputs for 13 of these
applications. Using these extra inputs, AFL was able to
discover an additional 9 crashes, for a total of 77, meaning
that Driller achieves a 12% improvement over baseline fuzzing
in relation to discovered vulnerabilities.

Harikrishnan Balagopal Automated Detection of Software Bugs

Conclusion

Symbolic Execution is a extremely useful technique to find software
bugs. It can be used at both the source code and binary level. It
can check practically infinite number of inputs at once, as opposed
to traditional testing techniques which checks 1 input at a time. It
can also check all possible paths of execution through the program
thus achieving 100% code coverage. This makes Symbolic
Execution both Sound (No false positives, generated test cases
lead to actual bugs) and Complete (Finds all buggy inputs).

While there are still several challenges involved in scaling symbolic
execution to large programs, significant research is going on in this
area and as machines get faster and more powerful, it is sure to
become more and more feasible in the future.

Harikrishnan Balagopal Automated Detection of Software Bugs

References

KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs
Cadar, Cristian and Dunbar, Daniel and Engler, Dawson R
and others,
Stanford University,
book OSDI, volume 8, pages 209–224, year 2008,
http://www.doc.ic.ac.uk/~cristic/papers/

klee-osdi-08.pdf

SAGE: whitebox fuzzing for security testing
Godefroid, Patrice and Levin, Michael Y and Molnar, David,
2012,
journal Communications of the ACM, volume 55, number 3,
pages 40–44, year 2012, publisher ACM,
https://courses.cs.washington.edu/courses/cse484/

14au/reading/sage-cacm-2012.pdf

Harikrishnan Balagopal Automated Detection of Software Bugs

http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/sage-cacm-2012.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/sage-cacm-2012.pdf

References

Derivative-Free Optimization via Classification
Yang Yu and Hong Qian and Yi-Qi Hu,
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16),
book AAAI, volume 16, pages 2286–2292, year 2016,
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/

paper/download/12367/11874

Symbolic Execution of Complex Program Driven by
Machine Learning Based Constraint Solving
Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang
Yu, Xin Chen, and Xuandong Li,
book Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering,
pages 554–559, year 2016, ACM,
https://dl.acm.org/citation.cfm?id=2970364

A survey of static program analysis techniques
Wögerer, Wolfgang, Technische Universität Wien, year 2005,
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.394.5540&rep=rep1&type=pdf

Harikrishnan Balagopal Automated Detection of Software Bugs

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12367/11874
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12367/11874
https://dl.acm.org/citation.cfm?id=2970364
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.5540&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.5540&rep=rep1&type=pdf

References

A survey of dynamic program analysis techniques and
tools
Gosain, Anjana and Sharma, Ganga,
book Proceedings of the 3rd International Conference on
Frontiers of Intelligent Computing: Theory and Applications
(FICTA) 2014, pages 113–122, year 2015, Springer,
https://link.springer.com/chapter/10.1007/

978-3-319-11933-5_13

Driller: Augmenting Fuzzing Through Selective Symbolic
Execution
Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna,
UC Santa Barbara,
book NDSS, volume 16, pages 1–16, year 2016,
http://cs.ucsb.edu/~chris/research/doc/ndss16_

driller.pdf
Harikrishnan Balagopal Automated Detection of Software Bugs

https://link.springer.com/chapter/10.1007/978-3-319-11933-5_13
https://link.springer.com/chapter/10.1007/978-3-319-11933-5_13
http://cs.ucsb.edu/~chris/research/doc/ndss16_driller.pdf
http://cs.ucsb.edu/~chris/research/doc/ndss16_driller.pdf

References

Wikipedia:

Program analysis,
https://en.wikipedia.org/wiki/Program_analysis

Static program analysis,
https:

//en.wikipedia.org/wiki/Static_program_analysis

Symbolic execution, Symbolic execution tools
https://en.wikipedia.org/wiki/Symbolic_execution

Concolic testing,
https://en.wikipedia.org/wiki/Concolic_testing

Fuzzing,
https://en.wikipedia.org/wiki/Fuzzing

Youtube MIT OpenCourseWare
https://youtu.be/yRVZPvHYHzw

DARPA’s Cyber Grand Challenge: Final Event Program,
https://youtu.be/n0kn4mDXY6I

Harikrishnan Balagopal Automated Detection of Software Bugs

https://en.wikipedia.org/wiki/Program_analysis
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Symbolic_execution
https://en.wikipedia.org/wiki/Concolic_testing
https://en.wikipedia.org/wiki/Fuzzing
https://youtu.be/yRVZPvHYHzw
https://youtu.be/n0kn4mDXY6I

Harikrishnan Balagopal Automated Detection of Software Bugs

